• 제목/요약/키워드: anticancer therapy

검색결과 276건 처리시간 0.031초

Overexpression and Selective Anticancer Efficacy of ENO3 in STK11 Mutant Lung Cancers

  • Park, Choa;Lee, Yejin;Je, Soyeon;Chang, Shengzhi;Kim, Nayoung;Jeong, Euna;Yoon, Sukjoon
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.804-809
    • /
    • 2019
  • Oncogenic gain-of-function mutations are clinical biomarkers for most targeted therapies, as well as represent direct targets for drug treatment. Although loss-of-function mutations involving the tumor suppressor gene, STK11 (LKB1) are important in lung cancer progression, STK11 is not the direct target for anticancer agents. We attempted to identify cancer transcriptome signatures associated with STK11 loss-of-function mutations. Several new sensitive and specific gene expression markers (ENO3, TTC39C, LGALS3, and MAML2) were identified using two orthogonal measures, i.e., fold change and odds ratio analyses of transcriptome data from cell lines and tissue samples. Among the markers identified, the ENO3 gene over-expression was found to be the direct consequence of STK11 loss-of-function. Furthermore, the knockdown of ENO3 expression exhibited selective anticancer effect in STK11 mutant cells compared with STK11 wild type (or recovered) cells. These findings suggest that ENO3-based targeted therapy might be promising for patients with lung cancer harboring STK11 mutations.

The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs

  • Deok-Soo Son;Eun-Sook Lee;Samuel E. Adunyah
    • IMMUNE NETWORK
    • /
    • 제20권4호
    • /
    • pp.29.1-29.20
    • /
    • 2020
  • The development of refractory tumor cells limits therapeutic efficacy in cancer by activating mechanisms that promote cellular proliferation, migration, invasion, metastasis, and survival. Benzimidazole anthelmintics have broad-spectrum action to remove parasites both in human and veterinary medicine. In addition to being antiparasitic agents, benzimidazole anthelmintics are known to exert anticancer activities, such as the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, anti-angiogenesis, and blockage of glucose transport. These antitumorigenic effects even extend to cancer cells resistant to approved therapies and when in combination with conventional therapeutics, enhance anticancer efficacy and hold promise as adjuvants. Above all, these anthelmintics may offer a broad, safe spectrum to treat cancer, as demonstrated by their long history of use as antiparasitic agents. The present review summarizes central literature regarding the anticancer effects of benzimidazole anthelmintics, including albendazole, parbendazole, fenbendazole, mebendazole, oxibendazole, oxfendazole, ricobendazole, and flubendazole in cancer cell lines, animal tumor models, and clinical trials. This review provides valuable information on how to improve the quality of life in patients with cancers by increasing the treatment options and decreasing side effects from conventional therapy.

Combination of oxaliplatin and β-carotene suppresses colorectal cancer by regulating cell cycle, apoptosis, and cancer stemness in vitro

  • Junghyeun Lee;Seung Chul Heo;Yuri Kim
    • Nutrition Research and Practice
    • /
    • 제18권1호
    • /
    • pp.62-77
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Colorectal cancer (CRC) is the third most common cancer worldwide with a high recurrence rate. Oxaliplatin (OXA) resistance is one of the major reasons hindering CRC therapy. β-Carotene (BC) is a provitamin A and is known to have antioxidant and anticancer effects. However, the combined effect of OXA and BC has not been investigated. Therefore, this study investigated the anticancer effects and mechanism of the combination of OXA and BC on CRC. MATERIALS/METHODS: In the present study, the effects of the combination of OXA and BC on cell viability, cell cycle arrest, and cancer stemness were investigated using HCT116, HT29, OXA-resistant cells, and human CRC organoids. RESULTS: The combination of OXA and BC enhanced apoptosis, G2/M phase cell cycle arrest, and inhibited cancer cell survival in human CRC resistant cells and CRC organoids without toxicity in normal organoids. Cancer stem cell marker expression and self-replicating capacity were suppressed by combined treatment with OXA and BC. Moreover, this combined treatment upregulated apoptosis and the stem cell-related JAK/STAT signaling pathway. CONCLUSIONS: Our results suggest a novel potential role of BC in reducing resistance to OXA, thereby enhances the anticancer effects of OXA. This enhancement is achieved through the regulation of cell cycle, apoptosis, and stemness in CRC.

Peripheral Blood Immune Cell-based Biomarkers in Anti-PD-1/PD-L1 Therapy

  • Kyung Hwan Kim;Chang Gon Kim;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.8.1-8.15
    • /
    • 2020
  • Immune checkpoint blockade targeting PD-1 and PD-L1 has resulted in unprecedented clinical benefit for cancer patients. Anti-PD-1/PD-L1 therapy has become the standard treatment for diverse cancer types as monotherapy or in combination with other anticancer therapies, and its indications are expanding. However, many patients do not benefit from anti-PD-1/PD-L1 therapy due to primary and/or acquired resistance, which is a major obstacle to broadening the clinical applicability of anti-PD-1/PD-L1 therapy. In addition, hyperprogressive disease, an acceleration of tumor growth following anti-PD-1/PD-L1 therapy, has been proposed as a new response pattern associated with deleterious prognosis. Anti-PD-1/PD-L1 therapy can also cause a unique pattern of adverse events termed immune-related adverse events, sometimes leading to treatment discontinuation and fatal outcomes. Investigations have been carried out to predict and monitor treatment outcomes using peripheral blood as an alternative to tissue biopsy. This review summarizes recent studies utilizing peripheral blood immune cells to predict various outcomes in cancer patients treated with anti-PD-1/PD-L1 therapy.

Parenteral Docetaxel Emulsion System and Its Stability

  • Kim, Hyun-Jo
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권1호
    • /
    • pp.13-18
    • /
    • 2009
  • Docetaxel is an anticancer agent with low aqueous solubility. More extensive clinical use of this drug is somewhat delayed due to lack of appropriate delivery vehicles. An attempt was made to adopt an o/w emulsion as the drug carrier which incorporated docetaxel in the propyleneglycerol stabilized by a mixed-emulsifier system. A suitable formulation was found in this study: 10 mg/mL docetaxel, 10% (w/v) oil blend, 4% (w/v) PG, 3% (w/v) Solutol HS 15 in 2.25% (w/v) glycerol solution. The formulated emulsion has very good stability when stored at $40^{\cird}C$, and the docetaxel containment efficiency can be maintained above 95% and the mean emulsion diameter around $10{\mu}m$ for at least 3 months. The formulated emulsion is a promising carrier for docetaxel and other lipophilic drugs.

Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy

  • Xiaofeng Dai;Jiale Wu;Lianghui Lu;Yuyu Chen
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.496-514
    • /
    • 2023
  • Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.

악성 골육종으로 인한 골반반절제술 환자의 의지 보행훈련 증례연구 (A Case Study of Prosthetic Ambulation Training for Patient With Hemipelvectomy)

  • 박창주;홍도선;이정원
    • 한국전문물리치료학회지
    • /
    • 제5권2호
    • /
    • pp.91-97
    • /
    • 1998
  • The purpose of this study is to introduce prosthetic discipline and ambulation training after hemipelvectomy due to osteosarcoma. Over the past years, when the malignant bone tumors occurs in the extremities amputation is not enough to prevent a part recurrence and distal transformation resulting in fatal prognosis. On the other hand, these procedures could bring about a difficulty in rehabilitation in curing patient who have had hemipelvectomy. However the recent development of chemotherapy and diagnostic facility have permitted the orthopedic surgeons to many try amputations for the treatment of the malignant bone tumors. Unfortunately, there has not been many researches on hemipelvectomy. Since there is no studies found on hemipelvectomy either. Therefore, we introduce successful procedures for rehabilitation through the ambulation training for patients who have had amputation. One of our patients, who is an eighteen years old male, has had hemipelvectomy on the eighteenth of June in 1997 after his anticancer treatment over 12 times. He has had physical therapy of prosthetic ambulation training at the department of rehabilitation medicine Yonsei University Medical Center from the fifteenth of October to December '2nd in 1997.

  • PDF

Cancer Cell Targeting with Mouse TERT-Specific Group I Intron of Tetrahymena thermophila

  • Ban, Gu-Yee;Song, Min-Sun;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.1070-1076
    • /
    • 2009
  • Telomerase reverse transcriptase (TERT), which prolongs the replicative life span of cells, is highly upregulated in 85-90% of human cancers, whereas most normal somatic tissues in humans express limited levels of the telomerase activity. Therefore, TERT has been a potential target for anticancer therapy. Recently, we described a new approach to human cancer gene therapy, which is based on the group I intron of Tetrahymena thermophila. This ribozyme can specifically mediate RNA replacement of human TERT (hTERT) transcript with a new transcript harboring anticancer activity through a trans-splicing reaction, resulting in selective regression of hTERT-positive cancer cells. However, to validate the therapeutic potential of the ribozyme in animal models, ribozymes targeting inherent transcripts of the animal should be developed. In this study, we developed a Tetrahymena-based trans-splicing ribozyme that can specifically target and replace the mouse TERT (mTERT) RNA. This ribozyme can trigger transgene activity not only also in mTERT-expressing cells but hTERT-positive cancer cells. Importantly, the ribozyme could selectively induce activity of the suicide gene, a herpes simplex virus thymidine kinase gene, in cancer cells expressing the TERT RNA and thereby specifically hamper the survival of these cells when treated with ganciclovir. The mTERT-targeting ribozyme will be useful for evaluation of the RNA replacement approach as a cancer gene therapeutic tool in the mouse model with syngeneic tumors.

FoxM1 as a Novel Therapeutic Target for Cancer Drug Therapy

  • Xu, Xin-Sen;Miao, Run-Chen;Wan, Yong;Zhang, Ling-Qiang;Qu, Kai;Liu, Chang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.23-29
    • /
    • 2015
  • Background: Current cancer therapy mainly focuses on identifying novel targets crucial for tumorigenesis. The FoxM1 is of preference as an anticancer target, due to its significance in execution of mitosis, cell cycle progression, as well as other signal pathways leading to tumorigenesis. FoxM1 is partially regulated by oncoproteins or tumor suppressors, which are often mutated, lost, or overexpressed in human cancer. Since sustaining proliferating signaling is an important hallmark of cancer, FoxM1 is overexpressed in a series of human malignancies. Alarge-scale gene expression analysis also identified FoxM1 as a differentially-expressed gene in most solid tumors. Furthermore, overexpressed FoxM1 is correlated with the prognosis of cancer patients, as verified in a series of malignancies by Cox regression analysis. Thus, extensive studies have been conducted to explore the roles of FoxM1 in tumorigenesis, making it an attractive target for anticancer therapy. Several antitumor drugs have been reported to target or inhibit FoxM1 expression in different cancers, and down-regulation of FoxM1 also abrogates drug resistance in some cancer cell lines, highlighting a promising future for FoxM1 application in the clinic.

The Past, Present, and Future of Adoptive T Cell Therapy

  • Choi, Dong-Hoon;Kim, Tai-Gyu;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • 제12권4호
    • /
    • pp.139-147
    • /
    • 2012
  • Although adoptive T cell therapy (ACT) has become a promising immunotherapeutic regime for cancer treatment, its effectiveness has been hindered by several inherent shortcomings regarding safety and efficacy. During the past few decades, several strategies for enhancing the efficacy of ACT have been developed and introduced in clinic. This review will summarize not only the past approaches but also the latest strategies which have been shown to enhance the anticancer activity of ACT.