References
- Rosenberg, S. A., N. P. Restifo, J. C. Yang, R. A. Morgan, and M. E. Dudley. 2008. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer8: 299-308. https://doi.org/10.1038/nrc2355
- Delorme, E. J., and P. Alexander. 1964. Treatment of primary fibrosarcoma in the rat with immune lymphocytes. Lancet.2: 117-120.
- Eberlein, T. J., M. Rosenstein, and S. A. Rosenberg. 1982. Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J. Exp. Med. 156: 385-397. https://doi.org/10.1084/jem.156.2.385
- Donohue, J. H., M. Rosenstein, A. E. Chang, M. T. Lotze, R. J. Robb, and S. A. Rosenberg. 1984. The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J. Immunol. 132: 2123-2128.
- Rosenberg, S. A., M. T. Lotze, J. C. Yang, S. L. Topalian, A. E. Chang, D. J. Schwartzentruber, P. Aebersold, S. Leitman, W. M. Linehan, and C. A. Seipp, et al. 1993. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J. Natl. Cancer Inst. 85: 622-632. https://doi.org/10.1093/jnci/85.8.622
- Rosenberg, S. A., P. Spiess, and R. Lafreniere. 1986. A new approach to the adoptive immunotherapy of cancer with tumor- infiltrating lymphocytes Science 233: 1318-1321. https://doi.org/10.1126/science.3489291
- Rosenberg, S. A., B. S. Packard, P. M. Aebersold, D. Solomon, S. L. Topalian, S. T. Toy, P. Simon, M. T. Lotze, J. C. Yang, and C. A. Seipp, et al. 1988. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 319: 1676-1680. https://doi.org/10.1056/NEJM198812223192527
- Rosenberg, S. A., J. R. Yannelli, J. C. Yang, S. L. Topalian, D. J. Schwartzentruber, J. S. Weber, D. R. Parkinson, C. A. Seipp, J. H. Einhorn, and D. E. White. 1994. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst.86: 1159-1166. https://doi.org/10.1093/jnci/86.15.1159
- Seiter, S., V. Monsurro, M. B. Nielsen, E. Wang, M. Provenzano, J. R. Wunderlich, S. A. Rosenberg, and F. M. Marincola. 2002. Frequency of MART-1/MelanA and gp100/PMel17-specific T cells in tumor metastases and cultured tumor-infiltrating lymphocytes. J. Immunother. 25:252-263. https://doi.org/10.1097/00002371-200205000-00008
- Dudley, M. E., J. R. Wunderlich, T. E. Shelton, J. Even, and S. A. Rosenberg. 2003. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 26: 332-342. https://doi.org/10.1097/00002371-200307000-00005
- Muranski, P., A. Boni, C. Wrzesinski, D. E. Citrin, S. A. Rosenberg, R. Childs, and N. P. Restifo. 2006. Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? Nat. Clin. Pract. Oncol. 3: 668-681.
- Antony, P. A., C. A. Piccirillo, A. Akpinarli, S. E. Finkelstein, P. J. Speiss, D. R. Surman, D. C. Palmer, C. C. Chan, C. A. Klebanoff, W. W. Overwijk, S. A. Rosenberg, and N. P. Restifo. 2005. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol. 174: 2591-2601. https://doi.org/10.4049/jimmunol.174.5.2591
- Dummer, W., A. G. Niethammer, R. Baccala, B. R. Lawson, N. Wagner, R. A. Reisfeld, and A. N. Theofilopoulos. 2002. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. 110: 185-192. https://doi.org/10.1172/JCI0215175
- Gattinoni, L., S. E. Finkelstein, C. A. Klebanoff, P. A. Antony, D. C. Palmer, P. J. Spiess, L. N. Hwang, Z. Yu, C. Wrzesinski, D. M. Heimann, C. D. Surh, S. A. Rosenberg, and N. P. Restifo. 2005. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202:907-912. https://doi.org/10.1084/jem.20050732
- Wrzesinski, C., C. M. Paulos, L. Gattinoni, D. C. Palmer, A. Kaiser, Z. Yu, S. A. Rosenberg, and N. P. Restifo. 2007. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J. Clin.Invest. 117: 492-501. https://doi.org/10.1172/JCI30414
- Dudley, M. E., J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White, and S. A. Rosenberg. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850-854. https://doi.org/10.1126/science.1076514
- Gattinoni, L., C. A. Klebanoff, D. C. Palmer, C. Wrzesinski, K. Kerstann, Z. Yu, S. E. Finkelstein, M. R. Theoret, S. A. Rosenberg, and N. P. Restifo. 2005. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115: 1616-1626. https://doi.org/10.1172/JCI24480
- Berger, C., M. C. Jensen, P. M. Lansdorp, M. Gough, C. Elliott, and S. R. Riddell. 2008. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 118:294-305. https://doi.org/10.1172/JCI32103
- Gattinoni, L., E. Lugli, Y. Ji, Z. Pos, C. M. Paulos, M. F. Quigley, J. R. Almeida, E. Gostick, Z. Yu, C. Carpenito, E. Wang, D. C. Douek, D. A. Price, C. H. June, F. M. Marincola, M. Roederer, and N. P. Restifo. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17: 1290-1297. https://doi.org/10.1038/nm.2446
- Klebanoff, C. A., L. Gattinoni, D. C. Palmer, P. Muranski, Y. Ji, C. S. Hinrichs, Z. A. Borman, S. P. Kerkar, C. D. Scott, S. E. Finkelstein, S. A. Rosenberg, and N. P. Restifo. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17:5343-5352.
- Bleakley, M. and S. R. Riddell. 2011. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol. Cell Biol. 89: 396-407. https://doi.org/10.1038/icb.2010.124
- Parkhurst, M. R., J. Joo, J. P. Riley, Z. Yu, Y. Li, P. F. Robbins, and S. A. Rosenberg. 2009. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 onhuman colorectal cancer cells. Clin. Cancer Res. 15: 169-180. https://doi.org/10.1158/1078-0432.CCR-08-1638
- Morgan, R. A., Dudley, M. E., Y. Y. Yu, Z. Zheng, P. F. Robbins, M. R. Theoret, J. R. Wunderlich, M. S. Hughes, N. P. Restifo, and S. A. Rosenberg. 2003. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J. Immunol. 171: 3287-3295. https://doi.org/10.4049/jimmunol.171.6.3287
- Schaft, N., R. A. Willemsen, de J. Vries, B. Lankiewicz, B. W. Essers, J. W. Gratama, C. G. Figdor, R. L. Bolhuis, R. Debets, and G. J. Adema. 2003. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J. Immunol. 170: 2186-2194. https://doi.org/10.4049/jimmunol.170.4.2186
- Morgan, R. A., M. E. Dudley, J. R. Wunderlich, M. S. Hughes, J. C. Yang, R. M. Sherry, R. E. Royal, S. L. Topalian, U. S. Kammula, N. P. Restifo, Z. Zheng, A. Nahvi, C. R. de Vries, L. J. Rogers-Freezer, S. A. Mavroukakis, and S. A. Rosenberg. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314: 126-129. https://doi.org/10.1126/science.1129003
- Theoret, M. R., C. J. Cohen, A. V. Nahvi, L. T. Ngo, K. B. Suri, D. J. Jr. Powell, M. E. Dudley, R. A. Morgan, and S. A. Rosenberg. 2008. Relationship of p53 overexpression on cancers and recognition by anti-p53 T cell receptor-transduced T cells. Hum. Gene Ther. 19: 1219-1232. https://doi.org/10.1089/hum.2008.083
- Kronig, H., K. Hofer, H. Conrad, P. Guilaume, J. Muller, M. Schiemann, V. Lennerz, A. Cosma, C. Peschel, D. H. Busch, P. Romero, and H. Bernhard. 2009. Allorestricted T lymphocytes with a high avidity T-cell receptor towards NY-ESO-1 have potent anti-tumor activity. Int. J. Cancer 125: 649-655. https://doi.org/10.1002/ijc.24414
- Zhao, Y., Z. Zheng, P. F. Robbins, H. T. Khong, S. A. Rosenberg, and R. A. Morgan. 2005. Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J. Immunol. 174: 4415-4423. https://doi.org/10.4049/jimmunol.174.7.4415
- Thomas, S., S. A. Xue, M. Cesco-Gaspere, E. San Jose, D. P. Hart, V. Wong, R. Debets, B. Alarcon, E. Morris, and H. J. Stauss. 2007. Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells. J. Immunol.179: 5803-5810. https://doi.org/10.4049/jimmunol.179.9.5803
- Nagai, K., T. Ochi, H. Fujiwara, J. An, T. Shirakata, J. Mineno, K. Kuzushima, H. Shiku, J. J. Melenhorst, E. Gostick, D. A. Price, E. Ishii, and M. Yasukawa. 2011. Aurora kinase A-specific T-cell receptor gene transfer redirects T lymphocytes to display effective antileukemia reactivity. Blood119: 368-376.
- Johnson, L. A., R. A. Morgan, M. E. Dudley, L. Cassard, J. C. Yang, M. S. Hughes, U. S. Kammula, R. E. Royal, R. M. Sherry, J. R. Wunderlich, C. C. Lee, N. P. Restifo, S. L. Schwarz, A. P. Cogdill, R. J. Bishop, H. Kim, C. C. Brewer, S. F. Rudy, C. VanWaes, J. L. Davis, A. Mathur, R. T. Ripley, D. A. Nathan, C. M. Laurencot, and S. A. Rosenberg. 2009. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114: 535-546. https://doi.org/10.1182/blood-2009-03-211714
- Parkhurst, M. R., J. C. Yang, R. C. Langan, M. E. Dudley, D. A. Nathan, S. A. Feldman, J. L. Davis, R. A. Morgan, M. J. Merino, R. M. Sherry, M. S. Hughes, U. S. Kammula, G. Q. Phan, R. M. Lim, S. A. Wank, N. P. Restifo, P. F. Robbins, C. M. Laurencot, and S. A. Rosenberg. 2011. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19: 620-626. https://doi.org/10.1038/mt.2010.272
- Bendle, G. M., C. Linnemann, A. I. Hooijkaas, L. Bies, M. A. de Witte, A. Jorritsma, A. D. Kaiser, N. Pouw, R. Debets, E. Kieback, W. Uckert, J. Y. Song, J. B. Haanen, and T. N. Schumacher. 2010. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16:565-570. https://doi.org/10.1038/nm.2128
- Cohen, C. J., Y. Zhao, Z. Zheng, S. A. Rosenberg, and R. A. Morgan. 2006. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66: 8878-8886. https://doi.org/10.1158/0008-5472.CAN-06-1450
- Goff, S. L., L. A. Johnson, M. A. Black, H. Xu, Z. Zheng, C. J. Cohen, R. A. Morgan, S. A. Rosenberg, and S. A. Feldman. 2010. Enhanced receptor expression and in vitro effector function of a murine-human hybrid MART-1-reactive T cell receptor following a rapid expansion. Cancer Immunol. Immunother. 59: 1551-1560. https://doi.org/10.1007/s00262-010-0882-5
- Kuball, J., M. L. Dossett, M. Wolfl, W. Y. Ho, R. H. Voss, C. Fowler, and P. D. Greenberg. 2007. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109: 2331-2338. https://doi.org/10.1182/blood-2006-05-023069
- Cohen, C. J., Y. F. Li, M. El-Gamil, P. F. Robbins, S. A. Rosenberg, and R. A. Morgan. 2007. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67: 3898-3903. https://doi.org/10.1158/0008-5472.CAN-06-3986
- Voss, R. H., R. A. Willemsen, J. Kuball, M. Grabowski, R. Engel, R. S. Intan, P. Guillaume, P. Romero, C. Huber, and M. Theobald. 2008. Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. J. Immunol. 180: 391-401. https://doi.org/10.4049/jimmunol.180.1.391
- Sebestyen, Z., E. Schooten, T. Sals, I. Zaldivar, E. San Jose, B. Alarcon, S. Bobisse, A. Rosato, J. Szollosi, J. W. Gratama, R. A. Willemsen, and R. Debets. 2008. Human TCR that incorporate CD3zeta induce highly preferred pairing between TCRalpha and beta chains following gene transfer. J. Immunol. 180: 7736-7746. https://doi.org/10.4049/jimmunol.180.11.7736
-
Roszik, J., Z. Sebestyen, C. Govers, Y. Guri, A. Szoor, Z. Palyi-Krekk, G. Vereb, P. Nagy, J. Szollosi, and R. Debets. 2011. T-cell synapse formation depends on antigen recognition but not CD3 interaction: studies with TCR:
$\zeta$ , a candidate transgene for TCR gene therapy. Eur. J. Immunol. 41:1288-1297. https://doi.org/10.1002/eji.200940233 - Ochi, T., H. Fujiwara, S. Okamoto, J. An, K. Nagai, T. Shirakata, J. Mineno, K. Kuzushima, H. Shiku, and M. Yasukawa. 2011. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 118: 1495-1503. https://doi.org/10.1182/blood-2011-02-337089
- van der Veken, L. T., M. Coccoris, E. Swart, J. H. Falkenburg, T. N. Schumacher, and M. H. Heemskerk. 2009. Alpha beta T cell receptor transfer to gamma delta T cells generates functional effector cells without mixed TCR dimers in vivo. J. Immunol. 182: 164-170. https://doi.org/10.4049/jimmunol.182.1.164
- Sadelain, M., R. Brentjens, and I. Riviere. 2009. The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol. 21: 215-223. https://doi.org/10.1016/j.coi.2009.02.009
- Maher, J., R. J. Brentjens, G. Gunset, I. Riviere, and M. Sadelain. 2002. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat. Biotechnol. 20: 70-75. https://doi.org/10.1038/nbt0102-70
- Zhao, Y., Q. J. Wang, S. Yang, J. N. Kochenderfer, Z. Zheng, X. Zhong, M. Sadelain, Z. Eshhar, S. A. Rosenberg, and R. A. Morgan. 2009. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183: 5563-5574. https://doi.org/10.4049/jimmunol.0900447
- Kowolik, C. M., M. S. Topp, S. Gonzalez, T. Pfeiffer, S. Olivares, N. Gonzalez, D. D. Smith, S. J. Forman, M. C. Jensen, and L. J. Cooper. 2006. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66: 10995-11004. https://doi.org/10.1158/0008-5472.CAN-06-0160
- Imai, C., K. Mihara, M. Andreansky, I. C. Nicholson, C. H. Pui, T. L. Geiger, and D. Campana. 2004. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 18: 676-684. https://doi.org/10.1038/sj.leu.2403302
- Wang, J., M. Jensen, Y. Lin, X. Sui, E. Chen, C. G. Lindgren, B. Till, A. Raubitschek, S. J. Forman, X. Qian, S. James, P. Greenberg, S. Riddell, and O. W. Press. 2007. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum. Gene Ther. 18: 712-725. https://doi.org/10.1089/hum.2007.028
- Charo, J., S. E. Finkelstein, N. Grewal, N. P. Restifo, P. F. Robbins, and S. A. Rosenberg. 2005. Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res. 65:2001-2008. https://doi.org/10.1158/0008-5472.CAN-04-2006
- Eaton, D., D. E. Gilham, A. O'Neill, and R. E. Hawkins. 2002. Retroviral transduction of human peripheral blood lymphocytes with Bcl-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther. 9: 527-535. https://doi.org/10.1038/sj.gt.3301685
- Dotti, G., B. Savoldo, M. Pule, K. C. Straathof, E. Biagi, E. Yvon, S. Vigouroux, M. K. Brenner, and C. M. Rooney. 2005. Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105: 4677-4684. https://doi.org/10.1182/blood-2004-08-3337
- Dagarag, M., T. Evazyan, N. Rao, and R. B. Effros. 2004. Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J. Immunol. 173: 6303-6311. https://doi.org/10.4049/jimmunol.173.10.6303
- Zhou, J., X. Shen, J. Huang, R. J. Hodes, S. A. Rosenberg, and P. F. Robbins. 2005. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J. Immunol. 175: 7046-7052. https://doi.org/10.4049/jimmunol.175.10.7046
- Foster, A. E., G. Dotti, A. Lu, M. Khalil, M. K. Brenner, H. E. Heslop, C. M. Rooney, and C. M. Bollard. 2008. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J. Immunother. 31:500-505. https://doi.org/10.1097/CJI.0b013e318177092b
- Stephan, M. T., V. Ponomarev, R. J. Brentjens, A. H. Chang, K. V. Dobrenkov, G. Heller, and M. Sadelain. 2007. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med.13: 1440-1449. https://doi.org/10.1038/nm1676
- Morgan, R. A., J. C. Yang, M. Kitano, M. E. Dudley, C. M. Laurencot, and S. A. Rosenberg. 2010. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18: 843-851. https://doi.org/10.1038/mt.2010.24
- Marktel, S., Z. Magnani, F. Ciceri, S. Cazzaniga, S. R. Riddell, C. Traversari, C. Bordignon, and C. Bonini. 2003. Immunologic potential of donor lymphocytes expressing a suicide gene for early immune reconstitution after hematopoietic T-cell-depleted stem cell transplantation. Blood 101:1290-1298. https://doi.org/10.1182/blood-2002-08-2351
- Mercier-Letondal, P., M. Deschamps, D. Sauce, J. M. Certoux, N. Milpied, B. Lioure, J. Y. Cahn, E. Deconinck, C. Ferrand, P. Tiberghien, and E. Robinet. 2008. Early immune response against retrovirally transduced herpes simplex virus thymidine kinase-expressing gene-modified T cells coinfused with a T cell-depleted marrow graft: an altered immune response? Hum. Gene Ther. 19: 937-950. https://doi.org/10.1089/hum.2007.156
- Traversari, C., S. Marktel, Z. Magnani, P. Mangia, V. Russo, F. Ciceri, C. Bonini, and C. Bordignon. 2007. The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood 109: 4708-4715. https://doi.org/10.1182/blood-2006-04-015230
- Berger, C., M. E. Flowers, E. H. Warren, and S. R. Riddell. 2006. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107: 2294-2302. https://doi.org/10.1182/blood-2005-08-3503
- Deschamps, M., P. Mercier-Lethondal, J. M. Certoux, C. Henry, B. Lioure, C. Pagneux, J. Y. Cahn, E. Deconinck, E. Robinet, P. Tiberghien, and C. Ferrand. 2007. Deletions within the HSV-tk transgene in long-lasting circulating gene-modified T cells infused with a hematopoietic graft. Blood 110:3842-3852. https://doi.org/10.1182/blood-2007-04-087346
- Sato, T., A. Neschadim, M. Konrad, D. H. Fowler, A. Lavie, and J. A. Medin. 2007. Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol.Ther. 15: 962-970. https://doi.org/10.1038/mt.sj.6300122
- Di Stasi, A., S. K. Tey, G. Dotti, Y. Fujita, A. Kennedy-Nasser, C. Martinez, K. Straathof, E. Liu, A. G. Durett, B. Grilley, H. Liu, C. R. Cruz, B. Savoldo, A. P. Gee, J. Schindler, R. A. Krance, H. E. Heslop, D. M. Spencer, C. M. Rooney, and M. K. Brenner. 2011. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365: 1673-1683. https://doi.org/10.1056/NEJMoa1106152
- Thomis, D. C., S. Marktel, C. Bonini, C. Traversari, M. Gilman, C. Bordignon, and T. Clackson. 2001. A Fas-based suicide switch in human T cells for the treatment of graft-versus- host disease. Blood 97: 1249-1257. https://doi.org/10.1182/blood.V97.5.1249
- Griffioen, M., E. H. van Egmond, M. G. Kester, R. Willemze, J. H. Falkenburg, and M. H. Heemskerk. 2009. Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica 94: 1316-1320. https://doi.org/10.3324/haematol.2008.001677
- Yoon, S. H., J. M. Lee, H. I. Cho, E. K. Kim, H. S. Kim, M. Y. Park, and T. G. Kim. 2009. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther. 16:489-497. https://doi.org/10.1038/cgt.2008.98
- Phan, G. Q., J. C. Yang, R. M. Sherry, P. Hwu, S. L. Topalian, D. J. Schwartzentruber, N. P. Restifo, L. R. Haworth, C. A. Seipp, L. J. Freezer, K. E. Morton, S. A. Mavroukakis, P. H. Duray, S. M. Steinberg, J. P. Allison, T. A. Davis, and S. A. Rosenberg. 2003. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. U.S.A. 100: 8372-8377. https://doi.org/10.1073/pnas.1533209100
- Meijer, S. L., A. Dols, S. M. Jensen, H. M. Hu, W. Miller, E. Walker, P. Romero, B. A. Fox, and W. J. Urba. 2007. Induction of circulating tumor-reactive CD8+ T cells after vaccination of melanoma patients with the gp100 209-2M peptide. J. Immunother. 30: 533-543. https://doi.org/10.1097/CJI.0b013e3180335b5e
- Overwijk, W. W., M. R. Theoret, S. E. Finkelstein, D. R. Surman, L. A. de Jong, F. A. Vyth-Dreese, T. A. Dellemijn, P. A. Antony, P. J. Spiess, D. C. Palmer, D. M. Heimann, C. A. Klebanoff, Z. Yu, L. N. Hwang, L. Feigenbaum, A. M. Kruisbeek, S. A. Rosenberg, and N. P. Restifo. 2003. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198:569-580. https://doi.org/10.1084/jem.20030590
- Cooper, L. J., Z. Al-Kadhimi, L. M. Serrano, T. Pfeiffer, S. Olivares, A. Castro, W. C. Chang, S. Gonzalez, D. Smith, S. J. Forman, and M. C. Jensen. 2005. Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood105: 1622-1631. https://doi.org/10.1182/blood-2004-03-1208
- Paulos, C. M., C. Wrzesinski, A. Kaiser, C. S. Hinrichs, M. Chieppa, L. Cassard, D. C. Palmer, A. Boni, P. Muranski, Z. Yu, L. Gattinoni, P. A. Antony, S. A. Rosenberg, and N. P. Restifo. 2007. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest. 117: 2197-2204. https://doi.org/10.1172/JCI32205
- Waldmann, T. A. 2006. The biology of interleukin-2 and interleukin- 15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6: 595-601. https://doi.org/10.1038/nri1901
- Choi, D., K. S. Kim, S. H. Yang, D. H. Chung, B. Song, J. Sprent, J. H. Cho, and Y. C. Sung. 2011. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses. Cancer Res. 71:7442-7451. https://doi.org/10.1158/0008-5472.CAN-11-1459
- Matsuda, J. L., T. Mallevaey, J. Scott-Browne, and L. Gapin. 2008. CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr. Opin. Immunol. 20: 358-368. https://doi.org/10.1016/j.coi.2008.03.018
- Zhou, D., C. Cantu, 3rd, Y. Sagiv, N. Schrantz, A. B. Kulkarni, X. Qi, D. J. Mahuran, C. R. Morales, G. A. Grabowski, K. Benlagha, P. Savage, A. Bendelac, and L. Teyton. 2004. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303: 523-527. https://doi.org/10.1126/science.1092009
- Kang, S. J. and P. Cresswell. 2004. Saposins facilitate CD1drestricted presentation of an exogenous lipid antigen to T cells. Nat. Immunol. 5: 175-181.
- Brigl, M. and M. B. Brenner. 2004. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22: 817-890. https://doi.org/10.1146/annurev.immunol.22.012703.104608
Cited by
- Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model vol.35, pp.8, 2012, https://doi.org/10.1007/s13277-014-1867-3
- Characterization of T cell phenotype and function in a double transgenic (collagen-specific TCR/HLA-DR1) humanized model of arthritis vol.16, pp.1, 2012, https://doi.org/10.1186/ar4433
- Cancer immunotherapy: dawn of the death of cancer? vol.39, pp.5, 2012, https://doi.org/10.1080/08830185.2020.1775827