DOI QR코드

DOI QR Code

The Past, Present, and Future of Adoptive T Cell Therapy

  • Choi, Dong-Hoon (Cellular Immunology Laboratory, Division of Molecular and Life Science, POSTECH Biotech Center, Pohang University of Science & Technology) ;
  • Kim, Tai-Gyu (Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea) ;
  • Sung, Young-Chul (Cellular Immunology Laboratory, Division of Molecular and Life Science, POSTECH Biotech Center, Pohang University of Science & Technology)
  • Received : 2012.06.22
  • Accepted : 2012.07.31
  • Published : 2012.08.30

Abstract

Although adoptive T cell therapy (ACT) has become a promising immunotherapeutic regime for cancer treatment, its effectiveness has been hindered by several inherent shortcomings regarding safety and efficacy. During the past few decades, several strategies for enhancing the efficacy of ACT have been developed and introduced in clinic. This review will summarize not only the past approaches but also the latest strategies which have been shown to enhance the anticancer activity of ACT.

Keywords

References

  1. Rosenberg, S. A., N. P. Restifo, J. C. Yang, R. A. Morgan, and M. E. Dudley. 2008. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer8: 299-308. https://doi.org/10.1038/nrc2355
  2. Delorme, E. J., and P. Alexander. 1964. Treatment of primary fibrosarcoma in the rat with immune lymphocytes. Lancet.2: 117-120.
  3. Eberlein, T. J., M. Rosenstein, and S. A. Rosenberg. 1982. Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J. Exp. Med. 156: 385-397. https://doi.org/10.1084/jem.156.2.385
  4. Donohue, J. H., M. Rosenstein, A. E. Chang, M. T. Lotze, R. J. Robb, and S. A. Rosenberg. 1984. The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J. Immunol. 132: 2123-2128.
  5. Rosenberg, S. A., M. T. Lotze, J. C. Yang, S. L. Topalian, A. E. Chang, D. J. Schwartzentruber, P. Aebersold, S. Leitman, W. M. Linehan, and C. A. Seipp, et al. 1993. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J. Natl. Cancer Inst. 85: 622-632. https://doi.org/10.1093/jnci/85.8.622
  6. Rosenberg, S. A., P. Spiess, and R. Lafreniere. 1986. A new approach to the adoptive immunotherapy of cancer with tumor- infiltrating lymphocytes Science 233: 1318-1321. https://doi.org/10.1126/science.3489291
  7. Rosenberg, S. A., B. S. Packard, P. M. Aebersold, D. Solomon, S. L. Topalian, S. T. Toy, P. Simon, M. T. Lotze, J. C. Yang, and C. A. Seipp, et al. 1988. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 319: 1676-1680. https://doi.org/10.1056/NEJM198812223192527
  8. Rosenberg, S. A., J. R. Yannelli, J. C. Yang, S. L. Topalian, D. J. Schwartzentruber, J. S. Weber, D. R. Parkinson, C. A. Seipp, J. H. Einhorn, and D. E. White. 1994. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst.86: 1159-1166. https://doi.org/10.1093/jnci/86.15.1159
  9. Seiter, S., V. Monsurro, M. B. Nielsen, E. Wang, M. Provenzano, J. R. Wunderlich, S. A. Rosenberg, and F. M. Marincola. 2002. Frequency of MART-1/MelanA and gp100/PMel17-specific T cells in tumor metastases and cultured tumor-infiltrating lymphocytes. J. Immunother. 25:252-263. https://doi.org/10.1097/00002371-200205000-00008
  10. Dudley, M. E., J. R. Wunderlich, T. E. Shelton, J. Even, and S. A. Rosenberg. 2003. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 26: 332-342. https://doi.org/10.1097/00002371-200307000-00005
  11. Muranski, P., A. Boni, C. Wrzesinski, D. E. Citrin, S. A. Rosenberg, R. Childs, and N. P. Restifo. 2006. Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? Nat. Clin. Pract. Oncol. 3: 668-681.
  12. Antony, P. A., C. A. Piccirillo, A. Akpinarli, S. E. Finkelstein, P. J. Speiss, D. R. Surman, D. C. Palmer, C. C. Chan, C. A. Klebanoff, W. W. Overwijk, S. A. Rosenberg, and N. P. Restifo. 2005. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol. 174: 2591-2601. https://doi.org/10.4049/jimmunol.174.5.2591
  13. Dummer, W., A. G. Niethammer, R. Baccala, B. R. Lawson, N. Wagner, R. A. Reisfeld, and A. N. Theofilopoulos. 2002. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. 110: 185-192. https://doi.org/10.1172/JCI0215175
  14. Gattinoni, L., S. E. Finkelstein, C. A. Klebanoff, P. A. Antony, D. C. Palmer, P. J. Spiess, L. N. Hwang, Z. Yu, C. Wrzesinski, D. M. Heimann, C. D. Surh, S. A. Rosenberg, and N. P. Restifo. 2005. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202:907-912. https://doi.org/10.1084/jem.20050732
  15. Wrzesinski, C., C. M. Paulos, L. Gattinoni, D. C. Palmer, A. Kaiser, Z. Yu, S. A. Rosenberg, and N. P. Restifo. 2007. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J. Clin.Invest. 117: 492-501. https://doi.org/10.1172/JCI30414
  16. Dudley, M. E., J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White, and S. A. Rosenberg. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850-854. https://doi.org/10.1126/science.1076514
  17. Gattinoni, L., C. A. Klebanoff, D. C. Palmer, C. Wrzesinski, K. Kerstann, Z. Yu, S. E. Finkelstein, M. R. Theoret, S. A. Rosenberg, and N. P. Restifo. 2005. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115: 1616-1626. https://doi.org/10.1172/JCI24480
  18. Berger, C., M. C. Jensen, P. M. Lansdorp, M. Gough, C. Elliott, and S. R. Riddell. 2008. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 118:294-305. https://doi.org/10.1172/JCI32103
  19. Gattinoni, L., E. Lugli, Y. Ji, Z. Pos, C. M. Paulos, M. F. Quigley, J. R. Almeida, E. Gostick, Z. Yu, C. Carpenito, E. Wang, D. C. Douek, D. A. Price, C. H. June, F. M. Marincola, M. Roederer, and N. P. Restifo. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17: 1290-1297. https://doi.org/10.1038/nm.2446
  20. Klebanoff, C. A., L. Gattinoni, D. C. Palmer, P. Muranski, Y. Ji, C. S. Hinrichs, Z. A. Borman, S. P. Kerkar, C. D. Scott, S. E. Finkelstein, S. A. Rosenberg, and N. P. Restifo. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17:5343-5352.
  21. Bleakley, M. and S. R. Riddell. 2011. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol. Cell Biol. 89: 396-407. https://doi.org/10.1038/icb.2010.124
  22. Parkhurst, M. R., J. Joo, J. P. Riley, Z. Yu, Y. Li, P. F. Robbins, and S. A. Rosenberg. 2009. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 onhuman colorectal cancer cells. Clin. Cancer Res. 15: 169-180. https://doi.org/10.1158/1078-0432.CCR-08-1638
  23. Morgan, R. A., Dudley, M. E., Y. Y. Yu, Z. Zheng, P. F. Robbins, M. R. Theoret, J. R. Wunderlich, M. S. Hughes, N. P. Restifo, and S. A. Rosenberg. 2003. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J. Immunol. 171: 3287-3295. https://doi.org/10.4049/jimmunol.171.6.3287
  24. Schaft, N., R. A. Willemsen, de J. Vries, B. Lankiewicz, B. W. Essers, J. W. Gratama, C. G. Figdor, R. L. Bolhuis, R. Debets, and G. J. Adema. 2003. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J. Immunol. 170: 2186-2194. https://doi.org/10.4049/jimmunol.170.4.2186
  25. Morgan, R. A., M. E. Dudley, J. R. Wunderlich, M. S. Hughes, J. C. Yang, R. M. Sherry, R. E. Royal, S. L. Topalian, U. S. Kammula, N. P. Restifo, Z. Zheng, A. Nahvi, C. R. de Vries, L. J. Rogers-Freezer, S. A. Mavroukakis, and S. A. Rosenberg. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314: 126-129. https://doi.org/10.1126/science.1129003
  26. Theoret, M. R., C. J. Cohen, A. V. Nahvi, L. T. Ngo, K. B. Suri, D. J. Jr. Powell, M. E. Dudley, R. A. Morgan, and S. A. Rosenberg. 2008. Relationship of p53 overexpression on cancers and recognition by anti-p53 T cell receptor-transduced T cells. Hum. Gene Ther. 19: 1219-1232. https://doi.org/10.1089/hum.2008.083
  27. Kronig, H., K. Hofer, H. Conrad, P. Guilaume, J. Muller, M. Schiemann, V. Lennerz, A. Cosma, C. Peschel, D. H. Busch, P. Romero, and H. Bernhard. 2009. Allorestricted T lymphocytes with a high avidity T-cell receptor towards NY-ESO-1 have potent anti-tumor activity. Int. J. Cancer 125: 649-655. https://doi.org/10.1002/ijc.24414
  28. Zhao, Y., Z. Zheng, P. F. Robbins, H. T. Khong, S. A. Rosenberg, and R. A. Morgan. 2005. Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J. Immunol. 174: 4415-4423. https://doi.org/10.4049/jimmunol.174.7.4415
  29. Thomas, S., S. A. Xue, M. Cesco-Gaspere, E. San Jose, D. P. Hart, V. Wong, R. Debets, B. Alarcon, E. Morris, and H. J. Stauss. 2007. Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells. J. Immunol.179: 5803-5810. https://doi.org/10.4049/jimmunol.179.9.5803
  30. Nagai, K., T. Ochi, H. Fujiwara, J. An, T. Shirakata, J. Mineno, K. Kuzushima, H. Shiku, J. J. Melenhorst, E. Gostick, D. A. Price, E. Ishii, and M. Yasukawa. 2011. Aurora kinase A-specific T-cell receptor gene transfer redirects T lymphocytes to display effective antileukemia reactivity. Blood119: 368-376.
  31. Johnson, L. A., R. A. Morgan, M. E. Dudley, L. Cassard, J. C. Yang, M. S. Hughes, U. S. Kammula, R. E. Royal, R. M. Sherry, J. R. Wunderlich, C. C. Lee, N. P. Restifo, S. L. Schwarz, A. P. Cogdill, R. J. Bishop, H. Kim, C. C. Brewer, S. F. Rudy, C. VanWaes, J. L. Davis, A. Mathur, R. T. Ripley, D. A. Nathan, C. M. Laurencot, and S. A. Rosenberg. 2009. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114: 535-546. https://doi.org/10.1182/blood-2009-03-211714
  32. Parkhurst, M. R., J. C. Yang, R. C. Langan, M. E. Dudley, D. A. Nathan, S. A. Feldman, J. L. Davis, R. A. Morgan, M. J. Merino, R. M. Sherry, M. S. Hughes, U. S. Kammula, G. Q. Phan, R. M. Lim, S. A. Wank, N. P. Restifo, P. F. Robbins, C. M. Laurencot, and S. A. Rosenberg. 2011. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19: 620-626. https://doi.org/10.1038/mt.2010.272
  33. Bendle, G. M., C. Linnemann, A. I. Hooijkaas, L. Bies, M. A. de Witte, A. Jorritsma, A. D. Kaiser, N. Pouw, R. Debets, E. Kieback, W. Uckert, J. Y. Song, J. B. Haanen, and T. N. Schumacher. 2010. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16:565-570. https://doi.org/10.1038/nm.2128
  34. Cohen, C. J., Y. Zhao, Z. Zheng, S. A. Rosenberg, and R. A. Morgan. 2006. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66: 8878-8886. https://doi.org/10.1158/0008-5472.CAN-06-1450
  35. Goff, S. L., L. A. Johnson, M. A. Black, H. Xu, Z. Zheng, C. J. Cohen, R. A. Morgan, S. A. Rosenberg, and S. A. Feldman. 2010. Enhanced receptor expression and in vitro effector function of a murine-human hybrid MART-1-reactive T cell receptor following a rapid expansion. Cancer Immunol. Immunother. 59: 1551-1560. https://doi.org/10.1007/s00262-010-0882-5
  36. Kuball, J., M. L. Dossett, M. Wolfl, W. Y. Ho, R. H. Voss, C. Fowler, and P. D. Greenberg. 2007. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109: 2331-2338. https://doi.org/10.1182/blood-2006-05-023069
  37. Cohen, C. J., Y. F. Li, M. El-Gamil, P. F. Robbins, S. A. Rosenberg, and R. A. Morgan. 2007. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67: 3898-3903. https://doi.org/10.1158/0008-5472.CAN-06-3986
  38. Voss, R. H., R. A. Willemsen, J. Kuball, M. Grabowski, R. Engel, R. S. Intan, P. Guillaume, P. Romero, C. Huber, and M. Theobald. 2008. Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. J. Immunol. 180: 391-401. https://doi.org/10.4049/jimmunol.180.1.391
  39. Sebestyen, Z., E. Schooten, T. Sals, I. Zaldivar, E. San Jose, B. Alarcon, S. Bobisse, A. Rosato, J. Szollosi, J. W. Gratama, R. A. Willemsen, and R. Debets. 2008. Human TCR that incorporate CD3zeta induce highly preferred pairing between TCRalpha and beta chains following gene transfer. J. Immunol. 180: 7736-7746. https://doi.org/10.4049/jimmunol.180.11.7736
  40. Roszik, J., Z. Sebestyen, C. Govers, Y. Guri, A. Szoor, Z. Palyi-Krekk, G. Vereb, P. Nagy, J. Szollosi, and R. Debets. 2011. T-cell synapse formation depends on antigen recognition but not CD3 interaction: studies with TCR:$\zeta$, a candidate transgene for TCR gene therapy. Eur. J. Immunol. 41:1288-1297. https://doi.org/10.1002/eji.200940233
  41. Ochi, T., H. Fujiwara, S. Okamoto, J. An, K. Nagai, T. Shirakata, J. Mineno, K. Kuzushima, H. Shiku, and M. Yasukawa. 2011. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 118: 1495-1503. https://doi.org/10.1182/blood-2011-02-337089
  42. van der Veken, L. T., M. Coccoris, E. Swart, J. H. Falkenburg, T. N. Schumacher, and M. H. Heemskerk. 2009. Alpha beta T cell receptor transfer to gamma delta T cells generates functional effector cells without mixed TCR dimers in vivo. J. Immunol. 182: 164-170. https://doi.org/10.4049/jimmunol.182.1.164
  43. Sadelain, M., R. Brentjens, and I. Riviere. 2009. The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol. 21: 215-223. https://doi.org/10.1016/j.coi.2009.02.009
  44. Maher, J., R. J. Brentjens, G. Gunset, I. Riviere, and M. Sadelain. 2002. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat. Biotechnol. 20: 70-75. https://doi.org/10.1038/nbt0102-70
  45. Zhao, Y., Q. J. Wang, S. Yang, J. N. Kochenderfer, Z. Zheng, X. Zhong, M. Sadelain, Z. Eshhar, S. A. Rosenberg, and R. A. Morgan. 2009. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183: 5563-5574. https://doi.org/10.4049/jimmunol.0900447
  46. Kowolik, C. M., M. S. Topp, S. Gonzalez, T. Pfeiffer, S. Olivares, N. Gonzalez, D. D. Smith, S. J. Forman, M. C. Jensen, and L. J. Cooper. 2006. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66: 10995-11004. https://doi.org/10.1158/0008-5472.CAN-06-0160
  47. Imai, C., K. Mihara, M. Andreansky, I. C. Nicholson, C. H. Pui, T. L. Geiger, and D. Campana. 2004. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 18: 676-684. https://doi.org/10.1038/sj.leu.2403302
  48. Wang, J., M. Jensen, Y. Lin, X. Sui, E. Chen, C. G. Lindgren, B. Till, A. Raubitschek, S. J. Forman, X. Qian, S. James, P. Greenberg, S. Riddell, and O. W. Press. 2007. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum. Gene Ther. 18: 712-725. https://doi.org/10.1089/hum.2007.028
  49. Charo, J., S. E. Finkelstein, N. Grewal, N. P. Restifo, P. F. Robbins, and S. A. Rosenberg. 2005. Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res. 65:2001-2008. https://doi.org/10.1158/0008-5472.CAN-04-2006
  50. Eaton, D., D. E. Gilham, A. O'Neill, and R. E. Hawkins. 2002. Retroviral transduction of human peripheral blood lymphocytes with Bcl-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther. 9: 527-535. https://doi.org/10.1038/sj.gt.3301685
  51. Dotti, G., B. Savoldo, M. Pule, K. C. Straathof, E. Biagi, E. Yvon, S. Vigouroux, M. K. Brenner, and C. M. Rooney. 2005. Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105: 4677-4684. https://doi.org/10.1182/blood-2004-08-3337
  52. Dagarag, M., T. Evazyan, N. Rao, and R. B. Effros. 2004. Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J. Immunol. 173: 6303-6311. https://doi.org/10.4049/jimmunol.173.10.6303
  53. Zhou, J., X. Shen, J. Huang, R. J. Hodes, S. A. Rosenberg, and P. F. Robbins. 2005. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J. Immunol. 175: 7046-7052. https://doi.org/10.4049/jimmunol.175.10.7046
  54. Foster, A. E., G. Dotti, A. Lu, M. Khalil, M. K. Brenner, H. E. Heslop, C. M. Rooney, and C. M. Bollard. 2008. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J. Immunother. 31:500-505. https://doi.org/10.1097/CJI.0b013e318177092b
  55. Stephan, M. T., V. Ponomarev, R. J. Brentjens, A. H. Chang, K. V. Dobrenkov, G. Heller, and M. Sadelain. 2007. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med.13: 1440-1449. https://doi.org/10.1038/nm1676
  56. Morgan, R. A., J. C. Yang, M. Kitano, M. E. Dudley, C. M. Laurencot, and S. A. Rosenberg. 2010. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18: 843-851. https://doi.org/10.1038/mt.2010.24
  57. Marktel, S., Z. Magnani, F. Ciceri, S. Cazzaniga, S. R. Riddell, C. Traversari, C. Bordignon, and C. Bonini. 2003. Immunologic potential of donor lymphocytes expressing a suicide gene for early immune reconstitution after hematopoietic T-cell-depleted stem cell transplantation. Blood 101:1290-1298. https://doi.org/10.1182/blood-2002-08-2351
  58. Mercier-Letondal, P., M. Deschamps, D. Sauce, J. M. Certoux, N. Milpied, B. Lioure, J. Y. Cahn, E. Deconinck, C. Ferrand, P. Tiberghien, and E. Robinet. 2008. Early immune response against retrovirally transduced herpes simplex virus thymidine kinase-expressing gene-modified T cells coinfused with a T cell-depleted marrow graft: an altered immune response? Hum. Gene Ther. 19: 937-950. https://doi.org/10.1089/hum.2007.156
  59. Traversari, C., S. Marktel, Z. Magnani, P. Mangia, V. Russo, F. Ciceri, C. Bonini, and C. Bordignon. 2007. The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood 109: 4708-4715. https://doi.org/10.1182/blood-2006-04-015230
  60. Berger, C., M. E. Flowers, E. H. Warren, and S. R. Riddell. 2006. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107: 2294-2302. https://doi.org/10.1182/blood-2005-08-3503
  61. Deschamps, M., P. Mercier-Lethondal, J. M. Certoux, C. Henry, B. Lioure, C. Pagneux, J. Y. Cahn, E. Deconinck, E. Robinet, P. Tiberghien, and C. Ferrand. 2007. Deletions within the HSV-tk transgene in long-lasting circulating gene-modified T cells infused with a hematopoietic graft. Blood 110:3842-3852. https://doi.org/10.1182/blood-2007-04-087346
  62. Sato, T., A. Neschadim, M. Konrad, D. H. Fowler, A. Lavie, and J. A. Medin. 2007. Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol.Ther. 15: 962-970. https://doi.org/10.1038/mt.sj.6300122
  63. Di Stasi, A., S. K. Tey, G. Dotti, Y. Fujita, A. Kennedy-Nasser, C. Martinez, K. Straathof, E. Liu, A. G. Durett, B. Grilley, H. Liu, C. R. Cruz, B. Savoldo, A. P. Gee, J. Schindler, R. A. Krance, H. E. Heslop, D. M. Spencer, C. M. Rooney, and M. K. Brenner. 2011. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365: 1673-1683. https://doi.org/10.1056/NEJMoa1106152
  64. Thomis, D. C., S. Marktel, C. Bonini, C. Traversari, M. Gilman, C. Bordignon, and T. Clackson. 2001. A Fas-based suicide switch in human T cells for the treatment of graft-versus- host disease. Blood 97: 1249-1257. https://doi.org/10.1182/blood.V97.5.1249
  65. Griffioen, M., E. H. van Egmond, M. G. Kester, R. Willemze, J. H. Falkenburg, and M. H. Heemskerk. 2009. Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica 94: 1316-1320. https://doi.org/10.3324/haematol.2008.001677
  66. Yoon, S. H., J. M. Lee, H. I. Cho, E. K. Kim, H. S. Kim, M. Y. Park, and T. G. Kim. 2009. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther. 16:489-497. https://doi.org/10.1038/cgt.2008.98
  67. Phan, G. Q., J. C. Yang, R. M. Sherry, P. Hwu, S. L. Topalian, D. J. Schwartzentruber, N. P. Restifo, L. R. Haworth, C. A. Seipp, L. J. Freezer, K. E. Morton, S. A. Mavroukakis, P. H. Duray, S. M. Steinberg, J. P. Allison, T. A. Davis, and S. A. Rosenberg. 2003. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. U.S.A. 100: 8372-8377. https://doi.org/10.1073/pnas.1533209100
  68. Meijer, S. L., A. Dols, S. M. Jensen, H. M. Hu, W. Miller, E. Walker, P. Romero, B. A. Fox, and W. J. Urba. 2007. Induction of circulating tumor-reactive CD8+ T cells after vaccination of melanoma patients with the gp100 209-2M peptide. J. Immunother. 30: 533-543. https://doi.org/10.1097/CJI.0b013e3180335b5e
  69. Overwijk, W. W., M. R. Theoret, S. E. Finkelstein, D. R. Surman, L. A. de Jong, F. A. Vyth-Dreese, T. A. Dellemijn, P. A. Antony, P. J. Spiess, D. C. Palmer, D. M. Heimann, C. A. Klebanoff, Z. Yu, L. N. Hwang, L. Feigenbaum, A. M. Kruisbeek, S. A. Rosenberg, and N. P. Restifo. 2003. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198:569-580. https://doi.org/10.1084/jem.20030590
  70. Cooper, L. J., Z. Al-Kadhimi, L. M. Serrano, T. Pfeiffer, S. Olivares, A. Castro, W. C. Chang, S. Gonzalez, D. Smith, S. J. Forman, and M. C. Jensen. 2005. Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood105: 1622-1631. https://doi.org/10.1182/blood-2004-03-1208
  71. Paulos, C. M., C. Wrzesinski, A. Kaiser, C. S. Hinrichs, M. Chieppa, L. Cassard, D. C. Palmer, A. Boni, P. Muranski, Z. Yu, L. Gattinoni, P. A. Antony, S. A. Rosenberg, and N. P. Restifo. 2007. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest. 117: 2197-2204. https://doi.org/10.1172/JCI32205
  72. Waldmann, T. A. 2006. The biology of interleukin-2 and interleukin- 15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6: 595-601. https://doi.org/10.1038/nri1901
  73. Choi, D., K. S. Kim, S. H. Yang, D. H. Chung, B. Song, J. Sprent, J. H. Cho, and Y. C. Sung. 2011. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses. Cancer Res. 71:7442-7451. https://doi.org/10.1158/0008-5472.CAN-11-1459
  74. Matsuda, J. L., T. Mallevaey, J. Scott-Browne, and L. Gapin. 2008. CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr. Opin. Immunol. 20: 358-368. https://doi.org/10.1016/j.coi.2008.03.018
  75. Zhou, D., C. Cantu, 3rd, Y. Sagiv, N. Schrantz, A. B. Kulkarni, X. Qi, D. J. Mahuran, C. R. Morales, G. A. Grabowski, K. Benlagha, P. Savage, A. Bendelac, and L. Teyton. 2004. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303: 523-527. https://doi.org/10.1126/science.1092009
  76. Kang, S. J. and P. Cresswell. 2004. Saposins facilitate CD1drestricted presentation of an exogenous lipid antigen to T cells. Nat. Immunol. 5: 175-181.
  77. Brigl, M. and M. B. Brenner. 2004. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22: 817-890. https://doi.org/10.1146/annurev.immunol.22.012703.104608

Cited by

  1. Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model vol.35, pp.8, 2012, https://doi.org/10.1007/s13277-014-1867-3
  2. Characterization of T cell phenotype and function in a double transgenic (collagen-specific TCR/HLA-DR1) humanized model of arthritis vol.16, pp.1, 2012, https://doi.org/10.1186/ar4433
  3. Cancer immunotherapy: dawn of the death of cancer? vol.39, pp.5, 2012, https://doi.org/10.1080/08830185.2020.1775827