• Title/Summary/Keyword: antibody engineering

Search Result 355, Processing Time 0.027 seconds

Detection of the Fungicide Iprovalicarb Residues Using a Surface Plasmon Resonance Biosensor (표면플라즈몬공명 바이오센서를 이용한 살균제 Iprovalicarb 잔류물의 검출)

  • Kim, Woon-Ho;Cho, Han-Keun;Kyung, Kee-Sung;Kim, Gi-Young
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.50-56
    • /
    • 2009
  • Surface plasmon resonance (SPR) biosensor has been used to detect many biochemical reactions, because this label-free sensor has high sensitivity and rapid response. The reactions are monitored by refractive index changes of the SPR biosensor. Iprovalicarb is protective, curative, and eradicative systemic fungicide introduced by Bayer AG in 1999. It has potential far control of downy mildew infesting onion, cucumber, grape and melon, late blight infesting tomato and potato, and anthracnose infesting watermelon and pepper. It is strictly limited to the maximum residue limit. In this study, the applicability of a portable SPR biosensor (Spreeta, Texas instrument, TX, USA) to detect the iprovalicarb residue was examined. The sensor chip was adopted to detect the reaction of iprovalicarb to immobilized iprovalicarb-antibody. The binding of the iprovalicarb onto the biosensor surface was measured by change of the refractive index (RI). Characteristics of the sensor chip including specificity, sensitivity, stability, and reusability were analyzed. In calibration test for seven levels of iprovalicarb concentration (0.32 to 5,000 mg/L) with three replications, a Sigmoidal model with Hill function was obtained between relative RI value and the iprovalicarb concentration with R-square of 0.998. It took 30 minutes to complete a set of detecting assay with the SPR biosensor.

A New Concept for Efficient Sensitivity Amplification of a QCM Based Immunosensor for TNF-α by Using Modified Magnetic Particles under Applied Magnetic Field

  • Bahk, Yeon-Kyoung;Kim, Hyung-Hoon;Park, Deog-Su;Chang, Seung-Cheol;Go, Jeung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4215-4220
    • /
    • 2011
  • This study introduces a new concept for a simple, efficient and cheap sensitivity amplification of a Quartz Crystal Microbalance (QCM) based immunosensor system for the detection of tumor necrosis factor-alpha (TNF-${\alpha}$, TNF) by using an in-built magnetic system. The frequency shift due to the applied magnetic field was successfully observed on magnetic particles labeled detection antibodies, anti-human TNF-${\alpha}$, which were bound to the immunologically captured TNF-${\alpha}$ on the gold coated quartz crystals. In the present system, the magnitude of frequency shift depends on both the strength of magnetic field and the amount of target antigen applied. Significant signal amplification was observed when the additional built-in residual stress generated by the modified magnetic particles under the magnetic field applied. Used in conjunction with a sandwich type non-competitive immunoassay format, the lower detection limit was calculated to be 25 $ngmL^{-1}$ and showed good linearity up to TNF-${\alpha}$ concentrations as high as 2.0 ${\mu}gmL^{-1}$. The sensitivity, most importantly, was improved up to 4.3 times compared with the same QCM system which was used only an antigen-antibody binding without additional magnetic amplification.

Sensing of the Insecticide Carbofuran Residues by Surface Plasmon Resonance and Immunoassay (표면플라즈몬공명과 효소면역분석법을 이용한 살충제 카보후란 잔류물 검출)

  • Yang G. M.;Cho N. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.333-339
    • /
    • 2005
  • The pesticide is raising public interest in the world, because it causes damage to an environmental pollution and the human health remaining agricultural products and an ecosystem, in spite of the advantages. Particularly, each country restricts the residual pesticide and induces observance about the safety and usage standard so that they can control the amount of pesticide used and defend the safety of agricultural products. The habitual practice for the analysis of the residual pesticide depends on GC (gas chromatography), HPLC (high performance liquid chromatography) and GC/MS (gas chromatography/mass spectroscopy), which triturate the fixed quantity of samples, abstract and purify as a suitable organic solvent. These methods have the highly efficient in aspects of sensitivity and accuracy. On the other hand, they need the high cost, time consuming, much effort, expensive equipment and the skillful management. Carbofuran is highly toxic by inhalation and ingestion and moderately toxic by dermal absorption. As with other carbamate compounds, it is metabolized in the liver and eventually excreted in the urine. The half-life of carbofuran on crops is about 4 days when applied to roots, and longer than 4 days if applied to the leaves. This research was conducted to develop immunoassay for detecting carbofuran residue quickly on the basis of surface plasmon resonance and to evaluate the measurement sensitivity. Gold chip used was CM5 spreaded dextran on the surface. An applied antibody to Immunoassay was GST (glutathione-s-transferase). The association and the dissociation time were 176 second and 215 second between GST and carbofuran. The total analysis time using surface plasmon resonance was 13 minutes including regeneration time, on the other hand HPLC and GC/MS was 2 hours usually. The minimum detection limit of a permissible amount for carbofuran in the country is 0.1 ppm. The immunoassay method using surface plasmon resonance was 0.002 ppm.

Nano SPR Biosensor for Detecting Lung Cancer-Specific Biomarker (폐암 바이오마커 검출용 나노SPR 바이오센서)

  • Jang, Eun-Yoon;Yeom, Se-Hyuk;Eum, Nyeon-Sik;Han, Jung-Hyun;Kim, Hyung-Kyung;Shin, Yong-Beom;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.144-149
    • /
    • 2013
  • In this research, we developed a biosensor to detect lung cancer-specific biomarker using Anodic Aluminum Oxide (AAO) chip based on interference and nano surface plasmon resonance (nanoSPR). The nano-porous AAO chip was fabricated $2{\mu}m$ of pore-depth by two-step anodizing method for surface uniformity. NanoSPR has sensitivity to the refractive index (RI) of the surrounding medium and also provides simple and label-free detection when specific antibodies are immobilized to the Au-deposited surface of nano-porous AAO chip. To detect the lung cancer-specific biomarker, antibodies were immobilized on the surface of the chip by Self Assembled Monolayer (SAM) method. Since then lung cancer-specific biomarker was applied atop the antibodies immobilized layer. The specific reaction of the antigen-antibody contributed to the change in the refractive index that cause shift of resonance spectrum in the interference pattern. The Limit of Detection (LOD) was 1 fg/ml by using our nano-porous AAO biosensor chip.

Simulation of IgY(Immunoglobulin Yolk) Purification by SMB(Simulated Moving Bed) (SMB(Simulated Moving Bed)를 이용한 IgY(Immunoglobulin Yolk) 분리의 전산모사)

  • Song, Sung-Moon;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.798-803
    • /
    • 2011
  • IgY(Immunoglobulin Yolk) is a specific antibody in egg yolk, and it protects human body from virus and antigen. There are a lot of egg yolk components such as lipoprotein and protein. To separate IgY, HPLC(High Performance Liquid Chromatography) and precipitation were used in a batch mode and SMB(Simulated Moving Bed) was adopted for continuous purification of yolk proteins. IgY and other proteins in yolk were separated by using three-zone SMB chromatography. Before performing SMB experiments, batch chromatography and PIM(pulse input method) were performed to find operation parameters and adsorption isotherms. The results of batch chromatography were compared with simulated results using Aspen chromatography. To find the most suitable separation condition in SMB chromatography, simulations in $m_2$-$m_3$ plane on the triangle theory were carried out. $m_2$ = 0.18, $m_3$ = 1.0 and ${\Delta}$t = 419 s are the best conditions for the highest purity of IgY. With this operating parameters(flow rate in three zone and switching time), the purity of raffinate results in 98.39% from Aspen chromatography simulation. Most of the simulation reached steadystate within second recycle.

Molecular Cloning, Protein Expression, and Regulatory Mechanisms of the Chitinase Gene from Spodoptera littoralis Nucleopolyhedrovirus

  • Yasser, Norhan;Salem, Reda;Alkhazindar, Maha;Abdelhamid, Ismail A.;Ghozlan, Said A.S.;Elmenofy, Wael
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.305-315
    • /
    • 2021
  • The cotton leafworm, Spodoptera littoralis, is a major pest in Egypt and many countries worldwide, and causes heavy economic losses. As a result, management measures to control the spread of the worm are required. S. littoralis nucleopolyhedrovirus (SpliNPV) is one of the most promising bioagents for the efficient control of insect pests. In this study, a chitinase gene (chitA) of a 1.8 kb DNA fragment was cloned and fully characterized from SpliNPV-EG1, an Egyptian isolate. A sequence of 601 amino acids was deduced when the gene was completely sequenced with a predicted molecular mass of 67 kDa for the preprotein. Transcriptional analyses using reverse transcription polymerase chain reaction (RT-PCR) revealed that chitA transcripts were detected first at 12 h post infection (hpi) and remained detectable until 168 hpi, suggesting their transcriptional regulation from a putative late promoter motif. In addition, quantitative analysis using quantitative RT-PCR showed a steady increase of 7.86-fold at 12 hpi in chitA transcription levels, which increased up to 71.4-fold at 120 hpi. An approximately 50 kDa protein fragment with chitinolytic activity was purified from ChitA-induced bacterial culture and detected by western blotting with an anti-recombinant SpliNPV chitinase antibody. Moreover, purification of the expressed ChitA recombinant protein showed in vitro growth inhibition of two different fungi species, Fusarium solani and F. oxysporum, confirming that the enzyme assembly and activity was correct. The results supported the potential role and application of the SpliNPV-ChitA protein as a synergistic agent in agricultural fungal and pest control programs.

Historical Review and Future of Cardiac Xenotransplantation

  • Jiwon Koh;Hyun Keun Chee;Kyung-Hee Kim;In-Seok Jeong;Jung-Sun Kim;Chang-Ha Lee;Jeong-Wook Seo
    • Korean Circulation Journal
    • /
    • v.53 no.6
    • /
    • pp.351-366
    • /
    • 2023
  • Along with the development of immunosuppressive drugs, major advances on xenotransplantation were achieved by understanding the immunobiology of xenograft rejection. Most importantly, three predominant carbohydrate antigens on porcine endothelial cells were key elements provoking hyperacute rejection: α1,3-galactose, SDa blood group antigen, and N-glycolylneuraminic acid. Preformed antibodies binding to the porcine major xenoantigen causes complement activation and endothelial cell activation, leading to xenograft injury and intravascular thrombosis. Recent advances in genetic engineering enabled knock-outs of these major xenoantigens, thus producing xenografts with less hyperacute rejection rates. Another milestone in the history of xenotransplantation was the development of co-stimulation blockaded strategy. Unlike allotransplantation, xenotransplantation requires blockade of CD40-CD40L pathway to prevent T-cell dependent B-cell activation and antibody production. In 2010s, advanced genetic engineering of xenograft by inducing the expression of multiple human transgenes became available. So-called 'multi-gene' xenografts expressing human transgenes such as thrombomodulin and endothelial protein C receptor were introduced, which resulted in the reduction of thrombotic events and improvement of xenograft survival. Still, there are many limitations to clinical translation of cardiac xenotransplantation. Along with technical challenges, zoonotic infection and physiological discordances are major obstacles. Social barriers including healthcare costs also need to be addressed. Although there are several remaining obstacles to overcome, xenotransplantation would surely become the novel option for millions of patients with end-stage heart failure who have limited options to traditional therapeutics.

Adjuvant Effect of PAMAM Dendrimer on the Antigenicity of Keyhole Limpet Hemocyanin in Balb/c Mice (Balb/c 마우스에서 Keyhole limpet hemocyanine (KLH)의 항원성에 대한 PAMAM dendrimer 의 면역증강 효과)

  • Lee, Ga-Young;Kim, Min Jee;Kim, So Yeon;Lee, Kyung Bok;Oh, Dong Hyun;Cho, Young Ho;Yoo, Yung Choon
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.905-911
    • /
    • 2020
  • The adjuvant effect of PAMAM dendrimer G4 (PAMAM) on the induction of humoral and cellular immune responses against keyhole limpet hemocyanin (KLH) was examined. Mice were immunized subcutaneously twice at two-week intervals with KLH, with or without PAMAM dendrimer (100 ㎍/mouse), and the mice immunized with KLH+PAMAM showed significantly higher antibody titers against KLH than those immunized with KLH alone. The assay for determining the isotypes of the antibodies showed that PAMAM augmented the KLH-specific antibody titers of IgG1, IgG2a, IgG2b, IgG3, and IgM. In addition, mice immunized twice with KLH+PAMAM followed by a subcutaneous injection of KLH (20 ㎍/site) 7 weeks after the primary immunization exhibited a higher delayed-type hypersensitivity (DTH) reaction than those treated with KLH alone. In an in vitro analysis of T lymphocyte proliferation in response to KLH in week 8, the splenocytes of mice treated with KLH+PAMAM showed significantly higher proliferating activity than those treated with KLH alone, and the culture supernatants of cell cultures from mice immunized with added PAMAM dendrimer showed higher levels of KLH-specific cytokine (IL-4 and IFN-r) production. These results suggest that PAMAM dendrimer G4 possesses a potent immune-adjuvant activity for enhancing both humoral and cell-mediated immunity specific to foreign antigens.

Differential Intracellular Localization of Mitotic Centromere-associated Kinesin (MCAK) During Cell Cycle Progression in Human Jurkat T Cells (인체 Jurkat T 세포에 있어서 세포주기에 따른 MCAK 단백질의 세포 내 위치변화)

  • Jun Do Youn;Rue Seok Woo;Kim Su-Jung;Kim Young Ho
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.253-260
    • /
    • 2005
  • Mitotic centromere-associated kinesin (MCAK), which is a member of the Kin I (internal motor domain) subfamily of kinesin-related proteins, is known to play a role in mitotic segregation of chromosome during M phase of the cell cycle. In the present study, we have produced a rat polyclonal antibody using human MCAK (HsMCAK) expressed in E. coli as the antigen. The antibody specifically recognized the HsMCAK protein (81 kDa), and could detect its nuclear localization in human Jurkat T cells and 293T cells by Western blot analysis. The specific stage of the cell cycle was obtained through blocking by either hydroxyl urea or nocodazole and subsequent releasing from each blocking for 2, 4, and 7 h. While the protein level of HsMCAK reached a maximum level in the S phase with slight decline in the $G_{2}-M$ phase, the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$ began to be induced in the late S phase and reached a maximum level in the $G_{2}/M $ phase, and then it disappeared as the cells enter into the $G_{1}$ phase. Immunocytochemical analysis revealed that HsMCAK protein localized to centrosome and nucleus at the interphase, whereas it appeared to localize to the spindle pole, centromere of the condensed mitotic DNA, spindle fiber, or midbody, depending on the specific stage of the M phase. These results demonstrate that a rat polyclonal antibody raised against recombinant HsMCAK expressed in E. coli specifically detects human MCAK, and indicate that the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$, which may be associated with its differential intracellular localization during the cell cycle, fluctuates with a maximum level of the shift at the $G_{2}-M$ phase.

Performance of Homologous and Heterologous Prime-Boost Immunization Regimens of Recombinant Adenovirus and Modified Vaccinia Virus Ankara Expressing an Ag85B-TB10.4 Fusion Protein against Mycobacterium tuberculosis

  • Kou, Yiming;Wan, Mingming;Shi, Wei;Liu, Jie;Zhao, Zhilei;Xu, Yongqing;Wei, Wei;Sun, Bo;Gao, Feng;Cai, Linjun;Jiang, Chunlai
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.1022-1029
    • /
    • 2018
  • Tuberculosis (TB) remains a serious health issue around the word. Adenovirus (Ad)-based vaccine and modified vaccinia virus Ankara (MVA)-based vaccine have emerged as two of the most promising immunization candidates over the past few years. However, the performance of the homologous and heterologous prime-boost immunization regimens of these two viral vector-based vaccines remains unclear. In the present study, we constructed recombinant Ad and MVA expressing an Ag85B-TB10.4 fusion protein (AdH4 and MVAH4) and evaluated the impact of their different immunization regimens on the humoral and cellular immune responses. We found that the viral vector-based vaccines could generate significantly higher levels of antigen-specific antibodies, $IFN-{\gamma}$-producing splenocytes, $CD69^+CD8^+$ T cells, and $IFN-{\gamma}$ secretion when compared with bacillus Calmette-$Gu{\acute{e}}rin$ (BCG) in a mouse model. AdH4-containing immunization regimens (AdH4-AdH4, AdH4-MVAH4, and MVAH4-AdH4) induced significantly stronger antibody responses, much more $IFN-{\gamma}$-producing splenocytes and $CD69^+CD8^+$ T cells, and higher levels of $IFN-{\gamma}$ secretion when compared with the MVAH4-MVAH4 immunization regimen. The number of $IFN-{\gamma}$-producing splenocytes sensitive to $CD8^+$ T-cell restricted peptides of Ag85B (9-1p and 9-2p) and Th1-related cytokines ($IFN-{\gamma}$ and $TNF-{\alpha}$) in the AdH4-MVAH4 heterologous prime-boost regimen immunization group was significantly higher than that in the other viral vector-based vaccine- and BCG-immunized groups, respectively. These results indicate that an immunization regimen involving AdH4 may have a higher capacity to induce humoral and cellular immune responses against TB in mice than that by regimens containing BCG or MVAH4 alone, and the AdH4-MVAH4 prime-boost regimen may generate an ideal protective effect.