• Title/Summary/Keyword: antibiotic resistance genes

Search Result 218, Processing Time 0.02 seconds

A Study on the Antibacterial Activity of Combined Administration of Jakyakgamcho-tang and Antibiotics Against MRSA (MRSA에 대한 작약감초탕과 항생제 병용투여의 항균활성에 관한 연구)

  • Dam Hee Kang;Ok Hwa Kang;Hee-Sung Chae;Dong Yeul Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.2
    • /
    • pp.72-79
    • /
    • 2023
  • MRSA is Staphylococcus aureus resistant to β-lactam antibiotics, and is a worldwide infectious disease. Even with the discovery of new antibiotics, resistance develops rapidly, so new alternatives are needed. Jakyakgamcho-tang (JGT) is a combination of Jakyak and Gamcho, and has been mainly used as an antispasmodic and analgesic in oriental medicine. This study was conducted to find out whether there is an effect on MRSA in relation to the anti-inflammatory effect of JGT and the antibacterial effect of Jakyak and Gamcho found in previous studies. In this study, in order to investigate the antibacterial activity of JGT and the combined effect of existing antibiotics, after extracting JGT with 70% EtoH, the disc diffusion method, minimum inhibitory concentration (MIC), drug combination effect (FICI), and time-kill analysis (Time-kill assay), metabolic inhibition, Western blot and qRT-PCR analysis were used to confirm the antibacterial activity mechanism of MRSA of JGT. As a result of the experiment, all of MRSA showed antibacterial activity in JGT's disc diffusion method, and the MIC was 250-1000 ㎍/mL. When existing antibiotics and JGT were combined with drugs, most had synergy or partial synergy. In addition, it was confirmed that the degree of bacterial growth was suppressed over time when simultaneous administration for 24 hours. JGT showed a synergistic effect when administered together with the ATPase-inhibitor DCCD, suggesting that it affected the inhibition of ATPase. As a result of observing the expression of PBP2a, and hla protein in the JGT-treated group and the untreated control group through wstern blot, it was confirmed that the protein expression of the JGT-treated group was significantly suppressed, and the expression levels of mecA, mecR1 and hla genes were also suppressed during JGT treatment. was observed by qRT-PCR. Combining the results of the experiment, it can be seen that JGT has antibacterial activity in MRSA, and when combined with existing antibiotics, the effect was increased compared to treatment with the drug alone. This suggests that JGT can be an alternative to treatment for antibiotic resistance of MRSA.

$pep^{27}$ and lytA in Vancomycin-Tolerant Pneumococci

  • Olivares, Alma;Trejo, Jose Olivares;Arellano-Galindo, Jose;Zuniga, Gerardo;Escalona, Gerardo;Vigueras, Juan Carlos;Marin, Paula;Xicohtencatl, Juan;Valencia, Pedro;Velazquez-Guadarrama, Norma
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1345-1351
    • /
    • 2011
  • Vancomycin therapy failure due to the emergence of tolerance in pneumococci is increasing. The molecular mechanism of tolerance is not clear, but lytA and $pep^{27}$ are known to be involved. Our aim was to evaluate the expression of both genes in vancomycin-tolerant Streptococcus pneumoniae (VTSP) strains. Eleven VTSP strains from a total of 309 clinical isolates of S. pneumoniae from 1997 to 2006 were classified according to the criteria of Liu and Tomasz. All VTSP strains were evaluated for susceptibility according to CLSI criteria, serotype by the Quellung test, and clonality by PFGE. The expressions of lytA and $pep^{27}$ were analyzed in different growth phases by RT-PCR with and without vancomycin. Eighty-two percent of VTSP strains showed resistance to penicillin, and 100% were sensitive to vancomycin and cefotaxime. The most frequent serotypes of VTSP strains were 23F (4/11) and 6B (3/11). Clonal relationship was observed in only two strains. No significant changes were observed in $pep^{27}$ expression in the three phases of growth in VTSP strains with and without vancomycin. Interestingly, $pep^{27}$ expression in the stationary phase in the non-tolerant reference strain R6 was significantly higher. However, no significant differences in lytA expression were observed between VTSP and R6 strains during the phases of growth analyzed. The absence of changes in $pep^{27}$ expression in VTSP strains in the stationary phase may be related to their ability to tolerate high antibiotic concentrations, and thus, they survive and remain in the host under the antibiotic selective pressure reflected in therapeutic failure.

The Characteristics of Imipenem-Resistant Bacteria Isolated from One Patient (한 환자에게서 분리된 Imipenem 내성세균들의 특성)

  • Park, Chul;Lee, Hyeok-Jae;Seo, Min-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.413-419
    • /
    • 2017
  • Four imipenem-resistant bacteria were isolated from the clinical specimens of a patient with pneumonia. To identify the isolates, we used the GN card of Vitek II system and performed a phylogenetic analysis based on 16S rRNA gene sequence. The isolates were identified as P. aeruginosa (2 strains), P. monteilii (1 strain), and P. putida (1 strain), and were tested for antibiotic resistance after determining the MIC of imipenem to be $${\geq_-}8{\mu}g/mL$$ using the AST-N225 card of Vitek II system. The imipenem-resistant genotypes were determined using PCR products amplified using specific ${\beta}-Lactamase$ gene primers. The MBL gene was identified in all four isolates. One strain of P. aeruginosa exhibited the VIM and SHV-1 type genes, while the other strain exhibited both VIM and OXA group II genes. According to the antimicrobial susceptibility test, the bacteria were more susceptible to amikacin than other antibiotics. DNA fingerprint analysis using ERIC-PCR to analyze the epidemiological relationship between strains estimated that both the P. aeruginosa isolates were similar, but exhibited different DNA band types. It is uncommon to find four strains of imipenem-resistant bacteria with different DNA band types in a single patient.

Studies on the Mechanism of Varietal Resistance of Rice to the Brown Planthopper(Nilaparvata lugens $ST{\AA}L$ (벼멸구에 대한 수도품종(水稻品種)의 저항성기작(抵抗性機作)에 관(關)한 연구(硏究))

  • Kim, J.W.;Choi, S.Y.;Park, J.S.
    • Korean journal of applied entomology
    • /
    • v.24 no.2 s.63
    • /
    • pp.51-60
    • /
    • 1985
  • This paper was performed to study the nature of varietal resistance of some Korean-new rice cultivars to the brown planthopper (BPH), Nilaparvata lugens ($ST{\AA}L$). The rice cultivars tested were Cheongcheong, Gaya, Hangangchal, Samgang, Nampoong and Yeongpoong which have been reported as having resistant genes for the BPH. The check varieties were Jinheung, Sangpoong and Chucheong for susceptible and IR-36 for resistant. The factors studied were referred to the seedling responses, preference in feeding and oviposition of BPH, antibiosis (nymphal development, adult emergence and sex ratio, adult body weight, population build-up, feeding amount and amylase activity), and chemical composition (inorganic components, chlorophyll contents, cell wall components, amino acids and esterase isozymes) of leaf- sheath and/or roots of rice plants. In conclusion, the natures of varietal resistance of rice cultivars to the BPH were not only correlated with the resistant reaction of rice plant, but also they were related with the non preference in feeding and oviposition and those resistant cultivars had the antibiotic effects to the insects. Their antibiotic effects of rice cultivars to the BPH would be related with some of the chemical components of rice plants, such as the contents of magnesium oxide (MgO), and chlorophyll and the different esterase isozymes.

  • PDF

Genotypic and Phenotypic Characteristics of Staphylococcus aureus Isolates from Lettuces and Raw Milk (상추와 원유에서 분리한 황색 포도상구균의 유전형 및 표현형 특징)

  • Jung, Hye-Jin;Cho, Joon-Il;Park, Sung-Hee;Ha, Sang-Do;Lee, Kyu-Ho;Kim, Cheol-Ho;Song, Eun-Seop;Chung, Duck-Hwa;Kim, Min-Gon;Kim, Kwang-Yup;Kim, Keun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.134-141
    • /
    • 2005
  • To characterize genotypic and phenotypic traits of Staphylococcus aureus isolates (n = 86) from lettuces and raw milk, major virulence-associated genes and antibiotic susceptibility were detected using PCR-based methods and disk diffusion method, respectively. All isolates possessed coagulase gene and showed five polymorphism types [500 bp (2.4%), 580 bp (17.4%), 660 bp (61.6%), 740 bp (17.4%), and 820 bp (1.2%)] due to variable numbers of tandem repeats present within the gene. Two or three different loci of hemolysin gene family were dominant in isolates, 47 of which (55%) possessed combination of hla/hld/hlg-2 genes as the most prevalent types. Among enterotoxin-encoding genes, sea was detected from 32 isolates (37%), sed from 1 isolate (1%), and sea and sed genes were co-detected from 4 isolates (5%), whereas seb, sec, and tsst-1 genes were not detected. All isolates were susceptible to ciprofloxacin, trimethoprim/sulfamethoxazole, oxacillin, and vancomycin, 85 isolates (99%) to penicillin G, 54 isolates (63%) to chloramphenicol, 51 isolates (59%) to erythromycin, and 7 isolates (8%) to clindamycin. Among resistant isolates, seven displayed multiantibiotic-resistance against two different antibiotics.

Antimicrobial Effect of Extract of Glycyrrhiza uralensis on Methicillin-Resistant Staphylococcus aureus (감초 추출물이 항생제 내성균주의 항균활성에 미치는 영향)

  • Lee, Ji-Won;Ji, Young-Ju;Yu, Mi-Hee;Im, Hyo-Gwon;HwangBo, Mi-Hyang;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.456-464
    • /
    • 2005
  • Antimicrobial drug-resistance is natural response to antimicrobial stress based on selection, which weakens chemotherapy effect. Introduction of large numbers of chemotherapeutic agents to clinical practice has generated strains of microorganisms that survive and multiply in vivo with high-drug concentrations. Methicillin-resistant Staphylococcus aureus (MRSA), bacteria found in normal daily life, can be easily ingested through milk vegetables, and meats, etc. MRSA emerged in many port of the world, increasing complex clinical problems. Therefore, new agents are needed to treat MRSA. Glycyrrhiza uralensis was extracted using 80% MeOH to investigate its antimicrobial activity against MRSA stains KCCM 11812, 40510, and 40512 through bacterial measurement, disc diffusion, and O.D. methods, MIC values, MRSA gene expression investigation, and scanning electron microscope observation. Results revealed MecA, Mecl, MecRI, and FemA were the most highly manifested MRSA genes. Methanolic extract of G. uralensis significantly inhibited MRSA and thus could be used in development of antibacteria.

Transfer of foreign Genes into the Bradyrhizobium japonicum and their Inoculation Effects on Soybean Plants (Bradyrhizobium japonicum에 외부유전자(外部遺傳子)의 도입(導入)과 대두(大豆)에 대한 접종효과)

  • Kim, Yong-Woong;Kim, Kil-Yong;Rhee, Young-Hwan;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.387-393
    • /
    • 1992
  • The fate of inoculum strain of Bradyrhizobium japonicum was studied by using genetically marked strain. RJB6 $str^rnal^rneo^r$. A spontaneous mutant of B. japonicum isolated from nodules was made to have antibiotic resistance against streptomycin and nalidixic acid. In order to make genetically marked strain, neomycine resistant gene(Tn5) was introduced into this spontaneous mutant by conjugation with E. coli containing pSUP2021. The southern hybridization was carried out to confirm the plasmid insertion. Hybridization of chromosome DNA using pSUP2021(Tn5) as a probe showed that Tn5 was located on the 4.9kb fragment of chromosome. Soybean seeds were planted into a soil previously cultivated with soybean and inoculated with different cell densities of marked strain. Fourty days after planting, the inoculation effects on nodule number, nodule fresh weight, plant height and nitrogen content in the plot inoculated with heavy cell suspension was a little better than those in the plot with low inoculation. The recovery percentage of the marked strains was about 12% in the plot inoculated with heavy density cell suspension, while 5% in the plot inoculated with low cell suspension.

  • PDF

In Vitro Screening of Antibacterial Agents for Suppression of Fire Blight Disease in Korea (기내 검정법을 이용한 국내 과수 화상병 방제제 선발)

  • Lee, Min Su;Lee, Ingyeong;Kim, Sam Kyu;Oh, Chang-Sik;Park, Duck Hwan
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Since fire blight disease on apple and pear was produced in Korea in 2015, there were no registered chemicals to control against this disease. Instead, several antibacterial chemicals that were registered for other bacterial diseases such as soft rot and bacterial spot have been authorized by Rural Development Administration (RDA). However, these chemicals are not tested efficacy for fire blight disease except damage by those treatments on apple and pear in Korea. Thus, we evaluated efficiency using in vitro and in planta assays of antibacterial chemicals such as antibiotics and copper compounds including kasugamycin, oxytetracycline, oxolinic acid and streptomycin, and copper hydroxide, copper sulfate, oxine copper and tribasic copper sulfate, respectively. We also tested two kinds of biological agents. As expected, significant antibacterial effect was observed in vitro test of both antibiotics and copper-based chemicals. In planta test based on disease severity including ooze and water-soaked formation on immature pears, bacterial populations on blooms, and blight lesion formation in artificially inoculated shoots, kasugamycin, oxytetracycline and streptomycin have been shown the most efficiency among tested antibiotics. Four copper-based chemicals tested in this study, control effects are little bit lower than agricultural antibiotics but they seem to be available to use in terms of winter season. Biocontrol agents were also shown possibility to treat in eco-friendly farms. In addition, there are no antibiotic resistance genes in Korean isolates against antibiotics, which were selected for suppression of fire blight in this study.