• Title/Summary/Keyword: antibacterial material

Search Result 231, Processing Time 0.036 seconds

The Effect of Electron-withdrawing Group Functionalization on Antibacterial and Catalytic Activity of Palladium(II) Complexes

  • Feng, Zhi-Qiang;Yang, Xiao-Li;Ye, Yuan-Feng;Hao, Lin-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1121-1127
    • /
    • 2014
  • The design, synthesis, and structural characterization of two new palladium complexes based on Schiff base ligands is reported; $[Pd(L1)_2]$ (1) and $[Pd(L2)_2]$ (2), [HL1 = 2-((E)-(2,6-diethylphenylimino)methyl)-4,6-dibromophenol, L2 = (E)-N-benzylidene-2,6-diethylbenzenamine], which are obtained by functionalizing Schiff base ligands with or without electron-withdrawing groups. Both compounds are mononuclear structures. Comparisons are made to the compounds 1 and 2 to analyze and understand the effect of electron-withdrawing groups. Antibacterial activity studies indicate the electron-withdrawing groups on Schiff base ligands enhance antibacterial activity. Catalytic activity, however, is reduced due to the enhanced steric-hindrance of the electron-withdrawing groups. Electronic absorption and emission properties of HL1, L2, 1 and 2 are also reported.

A Study on the Antibacterial Properties of Ag Electropulsed Anodized Aluminium Alloy (Pulse도금법에 의한 Ag주입 양극산화 알루미늄 합금의 항균특성에 관한 기초연구)

  • Lim, Ki-Young;Ki, Joon-Seo;Jang, Yong-Seok;Lee, Woo-Min;Yoon, Jeong-Mo
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.639-646
    • /
    • 2006
  • Over the last two decades, microbiologically influenced corrosion (MIC) of metallic materials has received considerable attention due to its serious effects on industrial field. In this context, it is important to devise control methods which inhibit biofilm formation on various metallic compounds and are compatible with environment. It was change of various conditions (duty cycle, current density, $AgNO_3$ concentration and pH) for injection of Ag particles in anodized Aluminum alloy pore using pulsed current. Optimal condition was obtained by means of FE-SEM, ICP analysis etc. The antibacterial metal's specimen were manufactured under optimal condition and this specimen were tested the antibacterial characterization and anticorrosion characterization. In result of test, we can confirmed that the antibacterial characterization and anticorrosion characterization of the specimens of injected Ag particles in anodized Aluminum alloy pore using pulsed current were better than the anodized Aluminum alloy specimens.

Deodorizing and Antibacterial Performance of Cotton, Silk, Wool Fabrics Dyed with Pomegranate (Punica granatum L.) Extracts

  • Lee, Young-Hee;Hwang, Eun-Kyung;Lee, Dong-Jin;Jung, Young-Jin;Kim, Han-Do
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.55-55
    • /
    • 2012
  • To improve the deodorizing and antibacterial performance of various fabrics (cotton, silk and wool) dyed with pomegranate(Punica granatum L.) extract without mordants, natural colorant solutions, which were extracted from pomegranate using water as an extractant at $90^{\circ}C$ for 90 min with a various liquor ratio (solid natural colorant material/solvent water, weight ratio) from 1:100 to 1:5 were used. To achieve the highest K/S and the deodorizing and antibacterial performance, the best liquor ratio, dyeing bath ratio, dyeing temperature and dyeing time were found to be 1:10, 1:50, $80^{\circ}C$ and 60 min, respectively. The deodorizing performance of dyed cotton, silk and wool fabrics against acetic acid vapor were found to be95,70,90%,respectively. However, all the dyed fabrics displayed outstanding deodorizing performance(99%) against ammonia gas and antibacterial performance(bacteriostatic reduction rate:99.9%) against Staphylococcu aureus and Klebsiella pneumonia(bacteriostatic reduction rate: 99.9%). It is worth noting that pomegranate (Punica granatum L.) colorants notably enhanced the deodorizing and antibacterial performance of cotton, silk and wool fabrics.

  • PDF

A Study of Development Antibacterial Cosmetic Case using UV Wavelength

  • Yum, Seung Hoon;Jung, In Geung;Jeong, Jae Young;Hwang, You Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, we propose an antibacterial cosmetic case using UV wavelengths. UVC have excellent antibacterial strength in terms of economics and convenience. The purpose of experiments was to prove it and to select a suitable permeability material. In experiments, UVA, UVC machanics and the competitor product were used to measure and compare the antibacterial strength of antibacterial cosmetic case using UV wavelength. S. aureus, a gram-positive strain, was used subject to the experiment, and the antibacterial strength measured and compared the number of colonies using the plate count technique. As a result, both UVA and UVC showed antibacterial activity, and UVC showed the most powerful antibacterial activity. In Conclusion, the Quartz glass was the most suitable of the permeable materials, but the more thick the examined quartz material became the less antibacterial strength.

A Study on Antibacterial Activity of Natural Material Treated Cotton Fabric (천연물 가공 면포의 항균성 연구)

  • 최인려
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.3
    • /
    • pp.441-446
    • /
    • 2003
  • Water-insoluble chitosan with molecular weight of 2,000,000, 500,000, 80,000, and 40,000 and more than 90% of degree of deacetylation were used to test antibacterial activity of chitosan against a pathogenic bacteria, methicillin resistant Staphylococcus aureus(MRSA), which is being issued in the world. As experimental method, Agar plate Smear Method and Agar plate Contact Method were used. The moleculur weight of chitosan didn't exert significant influences on its antibacterial activity against MRSA but chitosan having molecular weight 40,000, 80,000 and 150,000 showed the excellent antibacterial activity. The antibacterial efHciency was excellent in applying it after chitosan was dissolved in acetic acid solution, while the antibacterial efficiency was not expressed nearly in case of applying after chitosan was dissolved in neutral water. Therefore, it is considered that chitosan can show the antibacterial efficiency only if a positive ion status of -NH₃/sup +/ is maintained. MIC of chitosan/acetic acid solution and cotton fabrics finished with chitosan/acetic acid solution showed in concentration of 0.05%.

  • PDF

Antibacterial Activity and Inhibitory Effect of Biofilm Formation by Actinidia polygama against S. mutans and P. gingivalis

  • Chung Mu Park;Hyun-Seo Yoon
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • In oriental medicine, the fruit of Actinidia polygama has long been used to alleviate the symptoms of gout, arthritis, and inflammation. In this study, it was to designed to analyze the antibacterial activity of A. polygama ethanol extract (APEE) against Streptococcus mutans, one of the major strains for dental caries, and Porphyromonas gingivalis, one of the critical strains for periodontal disease. The antibacterial activity of APEE was analyzed by disk diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays. In addition, it was also analyzed the inhibitory effect of APEE on bacterial growth and biofilm formation against both oral pathogens. APEE exhibited its antibacterial effect through the inhibited bacterial diffusion as well as low concentration of MIC and MBC. In addition, APEE significantly inhibited not only bacterial growth but also biofilm formation in a dose-dependent manner. Consequently, APEE showed potent antibacterial activity against both S. mutans and P. gingivalis, which indicates that APEE might be used as a potential antibacterial material for the improvement of oral healthcare.

Preparation and Characterization of Antibacterial Dental Resin Cement Material

  • Kim, Duck-Hyun;Jung, Hwi-Su;Kim, Sun-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • Bis-GMA, TEGDMA, and camphorquinone were used as the main material, cross-linking agent, and photoinitiator, respectively. In addition, 2-isocyanatoethyl methacrylate was used as an additive for high strength, while the 3-hydroxypyridine was used as an additive for antibacterial activity. Photopolymerization was also carried out at a 440-480 nm wavelength and at about $1000mW/cm^2$ intensity for about 40 seconds. The breaking strength measurement of the samples showed that the breaking strength increased along with increasing the addition ratio of IEM, while it took less time until the polymerization was complete, thereby suggesting that the degree of polymerization has the tendency to increase. And also, compared to the size of the clear zone formed by ampicillin, the 3-hydroxypyridine group exhibited antimicrobial activity induced by ampicillin. The results of this study suggest that the use of 2-isocyanatoethyl methacrylate as an additive for high strength and 3-hydroxypyridine as an additive for improved antibacterial activity would improve the usability of the fabricated polymer as a dental resin cement material with high functionality.

Antimicrobial Activity of Tea Tree Oil against Pathogens relate to Acne (Tea Tree Oil의 여드름균에 대한 항균활성)

  • Seol, Jae-Won;Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.113-117
    • /
    • 2011
  • The purpose of this study is to determine the antimicrobial effect of tea tree oil a against pathogens relate to acne. Tea tree oil extracted from Australian Melaleuca alterifolia has been studied extensively for their antimicrobial properties against different type of bacteria and fungi. Tea tree oil has been reported to have antibacterial, antiinflammatory and antitumor activities, among others. By evaluating the antibacterial effect of Tea Tree Oil of Australia, the MIC value of Tea Tree oil against P. acnes was 0.05% and 0.5% against aerobic bacteria. This study showed that Tea Tree Oil has antibacterial effect against bacteria which induce acne. Tea Tree Oil had better antibacterial effect against P. acnes compared to aerobic bacteria. It is promising to develop a nature-based functional material for makeup product, which can cure and prevent acne.

  • PDF

The Dyeability and Antibacterial Activity of Silk, Rayon Fabrics dyed with Cochineal (코치닐에 의한 견.레이온 섬유의 천연염색성과 항균성)

  • Bae, Jung-Sook;Kim, Youn-Kyoung;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to investigate the dyeability, antibacterial activity on silk and rayon fabrics dyed with cochineal. The result are as follows; 1. The K/S value of silk fabric was higher than that of rayon fabric. 2. The optimum conditions are mordant concentration $0.5{\sim}1%$, dyeing material concentration 2.0%(o.w.f), dyeing temperature $60^{\circ}C$, PH 3 and dyeing time 30minutes. 3. Pre-mordanting method had higher dyeing absorption than post mordanting method in case of silk and rayon fabrics. 4. The antibacterial activity of dyed silk fabrics were higher than that of dyed rayon fabrics and the antibacterial activity was increased by mordanting. 5. The lightfastness and perspiration fastness of silk fabric were improved but these of rayon were not. Dyeing fastness was improved by Fe mordanting on both fabrics.

Antibacterial Effect on Enterococcus Faecalis and Physical Properties of Chitosan Added Calcium Hydroxide Canal Filling Material (키토산 첨가 수산화칼슘 근관 충전재의 Enterococcus Faecalis에 대한 항균 효과 및 물리적 성질)

  • Song, Sol;Kim, Yu-Jin;Lee, Jung-Hwan;Lee, Joonhaeng;Shin, Jisun;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.2
    • /
    • pp.198-208
    • /
    • 2021
  • The aim of this study was to evaluate the antibacterial effect on Enterococcus Faecalis and physical properties of chitosan added calcium hydroxide canal filling material. Low, medium, high molecular weights of chitosan powder were mixed with calcium hydroxide canal filling material. Also, for each molecular weight group, 1.0, 2.0, 5.0 wt% of chitosan powder were added. An overnight culture of E. faecalis was adjusted to 1 × 106 CFU/ml. For test of antibacterial effect, three different molecular weights of 2.0 wt% chitosan and three different concentrations of high molecular weight chitosan were mixed with calcium hydroxide canal filling material. The absorbance of plates was analyzed using spectrophotometer at 570 nm with a reference wavelength of 600 nm. Physical properties such as flow, film thickness and radiopacity were examined according to ISO 6876 : 2012. All molecular weight type of chitosan containing material showed inhibitory effect against E. faecalis growth compared to non-chitosan added calcium hydroxide canal filling material group (p < 0.05). High molecular weight chitosan containing material showed the most antibacterial effect. Also, the antibacterial effect decreased as the incorporated amount of chitosan decreased (p < 0.05). Every molecular weight group of material containing chitosan had a tendency for reduced flow and radiopacity, increased film thickness according to amount of chitosan. Low molecular weight of 1.0 wt% chitosan addition did not show any significant difference of physical properties compared to conventional calcium hydroxide canal filling material. In conclusion, for reinforcement of antibacterial effect against E. faecalis and for favorable physical properties, 2.0 wt% of chitosan adding is recommended. Considering its antibacterial effect of chitosan, further studies are required for clinical application of chitosan in endodontics and pediatric dentistry.