• Title/Summary/Keyword: antibacterial efficacy

Search Result 203, Processing Time 0.021 seconds

Effects of Mixed Scutellaria baicalensis Extracts as Natural Preservative on Efficacy and Storage of Lactic Acid-Fermented Garlic Extract (천연보존료 복합 황금추출물이 유산균발효 마늘추출물의 저장성 및 기능성에 미치는 영향)

  • Lee, Hee-Seop;Lee, Sun-Jin;Sohn, Johann;Yu, Heui-Jong;Cho, Hong-Yon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • The natural preservative "complex Scutellaria baicalensis extract (BHC)" contains Scutellaria baicalensis, Glycyrrhiza uralensis (liquorice), Zizyphus jujube (jujube), and Astragalus propinquus (milk vetch root). BHC has been used as a natural preservative for more than 10 years to increase storage duration and quality of food with strong antibacterial activity. BHC has been added into functional foods as a subsidiary ingredient. However, no studies have been performed to test whether or not BHC affects the activity of main functional ingredients. In this study, we tested whether or not BHC has any effect on the hepatoprotective activity of lactic acid-fermented garlic extract (LAFGE) when formulated in a clinical test supplement. $H_2O_2-induced$ oxidative damage in HepG2 cells was not attenuated by BHC, indicating that BHC had no influence on the protective effect of LAFGE against oxidative damage. Furthermore, BHC had no effect on the hepatoprotective effect of LAFGE against acetaminophen-induced acute liver injury in rats, as indicated by no changes in alanine transaminase and aspartate transaminase levels. In conclusion, BHC, formulated in the clinical test supplement with LAFGE, had no effect on hepatoprotective activity, indicating BHC could be considered as a suitable natural preservative for liquefied functional food materials.

The Efficacy of Lowering Blood Glucose Levels Using the Extracts of Fermented Bitter Melon in the Diabetic Mice (당뇨 마우스에서 여주발효추출물의 혈당 강하 효능)

  • Park, Hye Seon;Kim, Woo Kyeong;Kim, Hyun Pyo;Yoon, Young Geol
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.259-265
    • /
    • 2015
  • Momordica charantia, commonly known as bitter melon, has interesting pharmacological activities such as anticancer, antiviral, antibacterial, anti-inflammatory, analgesic, and antioxidant. As supported by recent scientific reports on the beneficial effects of M. charantia, it is one of the most promising functional plants for diabetes today. In this study, we fermented the bitter melon with lactic acid bacteria and investigated the capability of controlling diabetic conditions by decreasing the blood glucose levels. After extracting the fermented bitter melon with hot water or ethanol, we tested several biological activities using mouse models. When we tested the efficacy of the glycemic control, the extracts of fermented bitter melon significantly lowered the blood glucose levels of the alloxan-induced diabetic mice. We also found that the lactic acid bacteria-fermented bitter melon protected liver damages from the treatment of alloxan monohydrates and maintained low levels of triglycerides and high levels of HDL cholesterol in these mouse models. These results suggest that our approach on fermenting bitter melon and the extracts of fermented bitter melon could lead to the possibility of the development of functional foods that contain the effectiveness of controlling blood glucose and lipid levels as well as preventing liver damages.

Efficacy Evaluation of Disinfectant for Reducing Bioaerosols Generated in a Meat Processing Workplace (육가공 작업장에서 발생되는 바이오에어로졸 저감을 위한 살균제 효능 실증 평가)

  • Hwang, Ju-Young;Choi, Won;Kim, Doo-Young;An, Woo-Ju;Lee, Woo-Je;Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.2
    • /
    • pp.138-146
    • /
    • 2021
  • Objectives: This study aims to compare and evaluate the reduction efficiency of disinfectants used in the domestic meat processing industry to reduce bioaerosol exposure of meat industry workers and to use this as basic data for establishing work environment management measures. Methods: Thirteen disinfectants sold in South Korea were selected for evaluation and the bacterial reduction effect of the disinfectants was investigated. Bacterial suspension and surface disinfection tests were conducted to compare and analyze the antibacterial strength of the disinfectants. Pork carcasses, cutting boards, benches, and conveyor belts were selected for surface sterilization tests. Results: As a result of the bacterial suspension experiment test, all disinfectants had a bacterial reduction efficiency of more than 86%. Among them, the bacterial reduction efficiency of chlorine disinfectants was 99.93% on average. In the results of the pork carcass surface sterilization test, the rate of reduction of disinfectants made of quaternary ammonium compounds (QACs) was the highest. Tests of plastic cutting boards showed that chlorine disinfectants had the best sterilization effect. Experiments on stainless steel benches showed the best bacterial reduction efficiency for chlorine dioxide and QACs disinfectants. In the conveyor belt made of urethane, QACs disinfectants showed excellent sterilization effects. Conclusions: The study evaluated the disinfection power of disinfectants against bacteria occurring in domestic meat processing plants. All disinfectants were found to be effective in bacterial suspension experiments, and chlorine disinfectants were particularly effective. In surface sterilization experiments, sterilizing agents with QACs as the main ingredient were excellent.

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using Soil Fungi of High Altitudes of Eastern Himalaya

  • Devi, Lamabam Sophiya;Joshi, S.R.
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • Fifty three fungi isolated from soils of different microhabitats of eastern Himalayan range (3,400-3,600 msl) were screened for mycosynthesis of silver nanaoparticles (AgNPs) and their efficacy as antimicrobials were assessed in combination with commonly used antibiotics. Three isolates $Aspergillus$ $terreus$ SP5, $Paecilomyces$ $lilacinus$ SF1 and $Fusarium$ sp. MP5 identified based on morphological and 18S rRNA gene sequences were found to synthesize AgNPs. These nanoparticles were characterized by visual observation followed by UV-visible spectrophotometric analysis. The AgNPs synthesized by $Aspergillus$ $terreus$ SP5, $Paecilomyces$ $lilacinus$ SF1 and $Fusarium$ sp. MP5 showed absorbance maxima at 412, 419, and 421 nm respectively in the visible region. Transmission electron microscopy micrograph showed formation of spherical AgNPs of 5-50 nm size. The antimicrobial activity of the mycosynthesized nanoparticles were investigated alone and in combination with commonly used antibiotics for analysis of growth inhibition zone against test organisms, namely, $Staphylococcus$ $aureus$ MTCC96, $Streptococcus$ $pyogenes$ MTCC1925, $Salmonella$ $enterica$ MTCC735 and $Enterococcus$ $faecalis$ MTCC2729. The mycosynthesized nanoparticles showed potent antibacterial activity and interestingly their syngergistic effect with erythromycin, methicillin, chloramphenicol and ciprofloxacin was significantly higher as compared to inhibitions by AgNPs alone. The present study indicates that silver nanoparticles synthesized using soil borne indigenous fungus of high altitudes show considerable antimicrobial activity, deserving further investigation for potential applications.

Antimicrobial Effects of Photodynamic Therapy Using Blue Light Emitting Diode with Photofrin and Radachlorine against Propionibacterium acnes

  • Kwon, Pil-Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.6-10
    • /
    • 2015
  • Photodynamic therapy (PDT) apply photosensitizers and light. The purpose of this study was to evaluate the in vitro efficacy of PDT using blue LED (light emitting diode) with photofrin and radachlorin for Propionibacterium acnes. The colony forming units method was used to assess the antibacterial activity. Suspension (1 mL) containing P. acnes at $1{\times}10^5CFU/mL$ were prepared and then 2 fold serial diluted to $12.5{\mu}g/mL$ from $50{\mu}g/mL$ concentration of photofrin and radachlorin. After 60 minutes incubation, light was irradiated for 10 to 30 minutes using the following light source of wavelength 460 nm, each energy density 36, 72 and $108J/cm^2$. Bacterial growth was evaluated after 72 hours incubation in a Phenylethanol Blood Agar (PEBA) culture. In addition, flow cytometric analysis were performed to measure the live cell after PDT. Also transmission electron microscopy (TEM) was employed to evaluate the effect of pathogens by PDT. The PDT Group was perfectly killed to all kind of photosensitizers dose of $12.5{\mu}g/mL$ with irradiation of 10 minutes. Also other Groups were killed to all kind of photosensitizers dose of $6.25{\mu}g/mL$ with irradiation time of 20 and 30 minutes. The flow cytometry showed a lower number of viable bacteria in the PDT group compared to the control group. The images of the TEM results were showed in cytoplasmic membrane damage and partially deformed to cell morphologies. These results suggest that radachlorin and photofrin combine blue LED PDT can be effectively treated when was proved treatment for acnes therapy.

Immune Stimulating Efficacy of Soluble β-1,3-glucans (수용성 β-1,3-glucans의 면역 활성 효능에 대한 연구)

  • Shim, Jung-Hyun;Choi, Won-A;Kim, Jong-Wan;Lee, Hae-Sook;Baek, Tae-Woong;Cho, Min-Cheol;Lee, Kyung-Ae;Sang, Byung-Chan;Yoon, Do-Young
    • IMMUNE NETWORK
    • /
    • v.3 no.2
    • /
    • pp.156-163
    • /
    • 2003
  • Background: $\beta$-1,3-glucans are well known to enhance the immune reactions, resulting in antitumor, antibacterial, antiviral, anticoagulatory and wound healing activities. $\beta$-1, 3-glucans have various activities depending on molecular weight, degree of branching, conformation, water-solubility and intermolecular association. However, the $\beta$-1,3-glucan linked backbone structure is essential and $\beta$-D-glucopyranosyl units are required for immuno-potentiating activities. Result: In this study, we tested the immunophamacological activities of soluble $\beta$-1,3-glucans and confirmed the following activities: (1) $IFN-{\gamma}$ production in PBMCs in the presence or the absence of PHA, LPS, or IL-18; (2) induction of various cytokines in the spleen and thymus; (3) adjuvant effect on the antibody production; (4) nitrogen oxide synthesis in macrophages; (5) the cytotoxic and antitumor effects on cell lines and ICR mice. Conclusion: These results strongly suggested that $\beta$-1,3-glucans possessed various immuno-pharmacological activities.

Studies on the Enhanced Physiological Activities of Mixed Lactic Acid Bacteria Isolated from Fermented Watery Kimchi, Dongchimi (발효된 물김치인 동치미에서 분리한 혼합 젖산균의 생리활성 증진에 대한 연구)

  • Choi, Moon-Seop;Kim, Dong-Min;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • The aim of this study was to investigate the efficacy of enhanced physiological activities in cultures isolated from Korean fermented watery Kimchi, Dongchimi, of single lactic acid bacteria (LAB), and when these three are mixed LAB as probiotics. Using the BIOLOG system and 16S rRNA sequencing, the isolates were characterized, and identified and assigned to Leuconostoc mesenteroides DK-3, Leuconostoc dextranicum DK-6, and Lactobacillus curvatus DK-13, respectively. Growth rate and pH changes, production of organic acids as metabolites, and physiological activities of the single and mixed LAB cultures, were monitored and compared. In mixed LAB cultures after 72 h of incubation, the maximum concentrations of lactic acid and acetic acid were approximately 340.5 mM and 191.9 mM, respectively, and pH changed from 7.00 to 3.62. Mixed LAB cultures were able to eliminate 96.3% of nitrite. Activities of antioxidant and ${\beta}$-galactosidase were 60.3% and 16.8 units/mg, respectively. Significant antibacterial activity of the concentrated supernatants was demonstrated against several food-poisoning bacteria. Physiological activities obtained from the mixed LAB cultures have been shown to be considerably higher than those of single LAB cultures. In conclusion, these studies demonstrate that compared to the single cultures, all physiological activities in mixed LAB cultures are significantly enhanced.

Emodin Successfully Inhibited Invasion of Brucella abortus Via Modulting Adherence, Microtubule Dynamics and ERK Signaling Pathway in RAW 264.7 Cells

  • Huy, Tran Xuan Ngoc;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Arayan, Lauren Togonon;Son, Vu Hai;Min, Wongi;Lee, Hu Jang;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1723-1729
    • /
    • 2018
  • The aim of this work is to investigate the protective efficacy of emodin, an active, naturally-occurring anthraquinone derivative of several traditional Chinese herbs, against Brucella abortus infection in macrophages. Brucella were incubated with different concentrations of emodin and showed that bacterial survival rates were markedly reduced in a dose-dependent manner at increasing incubation time points. Through bacterial infection assay, the highest non-cytotoxic concentration of emodin demonstrated attenuated invasion of Brucella into macrophages, however it did not inhibit the growth of these pathogens within the host cells. On the other hand, emodin effectively decreased the number of bacteria that adhered to host cells, which indicated its potential as an anti-adhesin agent. Furthermore, using immunoblotting and FACS assay for detecting MAPK signaling proteins and F-actin polymerization, respectively, the results showed that the emodin-incubated cells displayed modest reduction in the phosphorylation levels of ERK1/2 and inhibition of F-actin polymerization as compared to control cells. These findings indicate the potential use of emodin as a naturally-occurring alternative method for the prevention of animal brucellosis although this requires confirmation of safe clinical doses.

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.