• Title/Summary/Keyword: antibacterial action

Search Result 148, Processing Time 0.026 seconds

EXPERIMENTAL STUDY ON THE ANTIBACTERIAL PROPERTIES OF DILUTE FORMOCRESOL AND EUGENOL AND PROPYLENE GLYCOL (희석 Formocresol과 Eugenol의 살균효과에 관한 실험적 연구)

  • Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.7 no.1
    • /
    • pp.47-52
    • /
    • 1981
  • The purpose of this study is to determine the antibacterial effect of Dilute Formocresol and Eugenol and Propylene glycol. The experimental drugs are Formocresol in Propylene glycol (5, 10, 20%) and Eugenol in Propylene glycol (50, 75, 100%) and Propylene glycol. The organisms selected for study were Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis which are found in infected root canals and are highly resistant to antiseptics. Isolated bacteria were inoculated on blood agar plate and the plates were incubated at $37^{\circ}C$ for 18 hours and the zones of inhibition then measured. The results were as follows ; 1. The antibacterial action of Formocresol was effective even at 5-10 percent and the action increased when higher concentration was used. 2. The antibacterial action of Eugenol was not effective and the action decreased when higher concentration was used. 3. Propylene glycol itself possessed some antibacterial properties and showed that the antibacterial action of Propylene glycol might be almost the same as that of Eugenol. 4. Among the experimental organisms, Pseudomonas aeruginosa was found to be the most resistant to all the experimental drugs.

  • PDF

Characterization of Antibacterial activity and Synthesis of Sulfanilamide Polymer using Crosslinking Agent (가교제를 이용한 Sulfanilamide 중합체의 합성과 항균특성)

  • Kim, Jong-Woan;Yoon, Chul-Hun;Hwang, Sung-Kwy;Kong, Seung-Dae;Lee, Han-Seab
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • Drug delivery system(DDS) have been actively studied for the past twenty years. Dual action agents are unique chemical entities comprised of two different types of antibacterial compounds covalently linked together in a single molecule in such a way that both components are able to exert their bactericidal properties. In spite of the advent of the antibacterial agent the sulfa agents are the most widely used antibacterial agent today. In this study, new antibacterials derivative was synthesized using glutaraldehyde such as crosslinking agent for the purpose of dual-action as DDS study. Antibacterial activity of these new synthetic derivative between their structures and activities were examined by disc diffusion method. As a result, new synthetic derivative exhibited the broad antibacterial activities against Gram(+) and Gram(-) bacilli. Especially, the antibacterial effect of new synthetic derivative against Gram negative(Esherichia. coli) was much stronger than that against Gram positive.

Antibiotics and Durability by Action of Sulfa Agents (Sulfa제의 Dual Action에 의한 지속성과 항균성)

  • Kong, Seung-Dae;Hwang, Sung-Kwy;Yoon, Cheol-Hun;Kim, Jin-Yeong;Lee, Han-Seob
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.267-272
    • /
    • 2000
  • Dual-actions are the most recently used delivery system in drug study. Dual-action agents are unique chemical entities comprised of two different type of antibacterial compounds covalently linked together in a single molecule in such a way that both components are able to exert their bactericidal properties. Crosslinked sulfadiazine-sulfanilamide such as antibiotics is synthesized by synthetic handle with glutaraldehyde. As a result, New synthetic antibacterial agent exhibited the broad antibacterial activities against gram(+) and gram(-) of 4 strains and a long durability supposing that the stomach and blood.

Screening of Leaves of Higher Plants for Antibacterial Action

  • Bae, Ki-Hwan;Byun, Jae-Hwa
    • Korean Journal of Pharmacognosy
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 1987
  • The methanol and benzene extracts of the leaves of 55 higher plants in Korea were tested for their antibacterial activity against three Gram positive bacteria, Streptococcus mutans, Staphylococcus aureus and Bacillus subtilis, and one Gram negative bacterium Escherichia coli. Among them, the methanol extract of the leaves of Liriodendron tulipifera showed remarkably potent antibacterial activity against both Gram positive and negative bacteria.

  • PDF

Synergistic Antibacterial Effect and Antibacterial Action Mode of Chitosan-Ferulic Acid Conjugate against Methicillin-Resistant Staphylococcus aureus

  • Eom, Sung-Hwan;Kang, Shin-Kook;Lee, Dae-Sung;Myeong, Jeong-In;Lee, Jinhwan;Kim, Hyun-Woo;Kim, Kyoung-Ho;Je, Jae-Young;Jung, Won-Kyo;Kim, Young-Mog
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.784-789
    • /
    • 2016
  • We evaluated the synergistic antibacterial effect in combination with the chitosan-ferulic acid conjugate (CFA) and β-lactam antibiotics, such as ampicillin, penicillin, and oxacillin, against methicillin-resistant Staphylococcus aureus (MRSA) using fractional inhibitory concentration (FIC) indices. CFA clearly reversed the antibacterial activity of ampicillin, penicillin, and oxacillin against MRSA in the combination mode. Among these antibiotics, the combination of oxacillin-CFA resulted in a ΣFICmin range of 0.250 and ΣFICmax of 0.563, suggesting that the oxacillin-CFA combination resulted in an antibacterial synergy effect against MRSA. In addition, we determined that CFA inhibited the mRNA expression of gene mecA and the production of PBP2a, which is a key determinant for β-lactam antibiotic resistance, in a dose-dependent manner. Thus, the results obtained in this study supported the idea on the antibacterial action mechanism that oxacillin will restore the antibacterial activity against MRSA through the suppression of PBP2a production by CFA.

Chemical Composition and Antimicrobial Activity of Essential Oil Extracted from Eucalyptus citriodora Leaf

  • Insuan, Wimonrut;Chahomchuen, Thippayarat
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.148-157
    • /
    • 2020
  • Eucalyptus oil is a rich source of bioactive compounds with a variety of biological activities and is widely used in traditional medicine. Eucalyptus citriodora is cultivated for the production of essential oils. However, the mode of antibacterial action of essential oils from E. citriodora is not well-known. This study aimed to determine the chemical components, microbial inhibitory effect, and mechanism of action of the essential oil from E. citriodora. The oil was extracted from E. citriodora leaves by hydro-distillation and the chemical components were analyzed using gas chromatography-mass spectrometry. The antibacterial activities of eucalyptus oil against gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, and Staphylococcus intermedius) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were screened by disc diffusion method and quantitative analysis was conducted by the microdilution method. The mechanism of action of the extracted essential oil was observed using SEM and analyzed by SDS-PAGE. The major components of E. citriodora oil were citronellal (60.55 ± 0.07%), followed by dl-isopulegol (10.57 ± 0.02%) and citronellol (9.04 ± 0.03%). The antibacterial screening indicated that E. citriodora oil exhibited prominent activity against all tested strains. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against B. subtilis were 0.5% and 1.0%, respectively. The MIC and MBC concentrations against S. aureus, S. intermedius, E. coli, and P. aeruginosa were 1% and 2%, respectively. As observed by SEM, the antibacterial mechanism of E. citriodora oil involved cell wall damage; SDS-PAGE revealed decrease in protein bands compared to untreated bacteria. Thus, E. citriodora oil showed significant antimicrobial properties and caused cellular damage.

Systemic Analysis of Antibacterial and Pharmacological Functions of Scutellariae Radix (시스템 약리학적 분석에 의한 황금의 항균효과)

  • Kim, Hyo Jin;Bak, Se Rim;Ha, Hee Jung;Kim, Youn Sook;Lee, Boo Kyun;An, Won Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.184-190
    • /
    • 2020
  • This study was performed to find antibacterial substances contained in Scutellariae Radix (SR) using a systems pharmacological analysis method and to establish an effective strategy for the prevention and treatment of infectious diseases. Analysis of the main active ingredients of SR was performed using Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform. 36 active compounds were screened by the parameter values of Drug-Likeness (DL), Oral Bioavailability (OB), and Caco-2 permeability (Caco-2), which were based on the drug absorption, distribution, metabolism, and excretion indicators. The UniProt database was used to obtain information on 159 genes associated with active compounds. The main active compounds with antibacterial effects were wogonin, β-sitosterol, baicalein, acacetin and oroxylin-A. Target proteins associated with the antibacterial action were chemokine ligand 2, interleukin-6, tumor necrosis factor, caspase-8,9 and mitogen-activated protein kinase 14. In the future, systems pharmacological analysis of traditional medicine will be able to make it easy to find the important mechanism of action of active substances present in natural medicines and to optimize the efficacy of medicinal effects for combinations of major ingredients to help treat certain diseases.

A Study on the Durability and Synthesis of Sulfa Agents Using Glutaraldehyde (Glutaraldehyde를 이용한 설파제의 합성과 지속성에 관한 연구)

  • Yoon Cheol Hun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.374-377
    • /
    • 2004
  • Dual actions are the most recently used delivery system in drug study. Dual-action agents are unique chemical entities comprised of two different type of antibacterial compounds covalently linked together in a single molecule in such a way that both components are able to exert their bactericidal properties. Crosslinked sulfadiazine-sulfanilamide such as antibiotics is synthesized by synthetic handle with glutaraldehyde. As a result, New synthetic antibacterial agent exhibited the broad antibacterial activities against Gram(+) and Gram(-) of 4 strains and a long durability supposing that the stomach and blood.

Cleavable Complex Formation as a Major Cellular Process in the Antibacterial Action of Quinolones

  • Park, Ji-Soo;Park, Sang-Hee;Lee, Yeon-Hee;Kong, Jae-Yang;Kim, Wan-Joo;Koo, Hyeon-Sook
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.464-470
    • /
    • 1995
  • Quinolone antibiotics are DNA gyrase inhibitors, but their bactericidal action seems to involve more than the inhibition of DNA gyrase activity. Hence, the potentially crucial factors among possible mechanisms of quinolone action; cleavable complex formation, inhibition of DNA synthesis, and induction of SOS response were investigated. These parameters were measured in an Escherichia coli strain exposed to quinolones in the logarithmic growth phase, and correlated with the bactericidal activity of quinolones. Cleavable complex formation proved to be the factor most related to bactericidal action. Inhibition of DNA synthesis was substantially correlated with bactericidal activity, but induction of SOS response was least correlated with bactericidal activity. Therefore, it was concluded that quinolones exert bactericidal action primarily through cleavable complex formation, and subsequent unknown cellular processes together with inhibition of DNA synthesis contribute to the bactericidal activity of quinolones.

  • PDF

Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species

  • Giyeol Han;Dong Gun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1547-1552
    • /
    • 2022
  • β-Amyrin is a pentacyclic triterpene widely distributed in leaves and stems worldwide. The ability of β-amyrin to induce the production of reactive oxygen species (ROS) in microorganisms suggests its potential as an antimicrobial agent. Thus, this study aimed to elucidate the antibacterial mode of action of β-amyrin. We treated Escherichia coli cells with β-amyrin and found that it triggered ROS accumulation. Excessive stress caused by ROS, particularly hydroxyl radicals, induces glutathione (GSH) dysfunction. GSH protects cells from oxidative and osmotic stresses; thus, its dysfunction leads to membrane depolarization. The resultant change in membrane potential leads to the release of apoptotic proteins, such as caspases. The activated caspases-like protein promotes the cleavage of DNA into single strands, which is a hallmark of apoptosis-like death in bacteria. Apoptotic cells usually undergo events such as DNA fragmentation and phosphatidylserine exposure, differentiating them from necrotic cells, and the cells treated with β-amyrin in this study were positive for annexin V and negative for propidium iodide, indicating apoptosis-like death. In conclusion, our findings suggest that the antibacterial mode of action of β-amyrin involves the induction of ROS, which resulted in apoptosis-like death in E. coli.