• Title/Summary/Keyword: anti-tumor growth

Search Result 578, Processing Time 0.02 seconds

Combined Treatment of Herbal Mixture Extract H9 with Trastuzumab Enhances Anti-tumor Growth Effect

  • Lee, Sunyi;Han, Sora;Jeong, Ae Lee;Park, Jeong Su;Jung, Seung Hyun;Choi, Kang-Duk;Yang, Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1036-1046
    • /
    • 2015
  • Extracts from Asian medicinal herbs are known to be successful therapeutic agents against cancer. In this study, the effects of three types of herbal extracts on anti-tumor growth were examined. Among the three types of herbal extracts, H9 showed stronger anti-tumor growth effects than H5 and H11 in vivo. To find the molecular mechanism by which H9 inhibited the proliferation of breast cancer cell lines, the levels of apoptotic markers were examined. Proapoptotic markers, including cleaved PARP and cleaved caspases 3 and 9, were increased, whereas the anti-apoptotic marker Bcl-2 was decreased by H9 treatment. Next, the combined effect of H9 with the chemotherapeutic drugs doxorubicin/cyclophosphamide (AC) on tumor growth was examined using 4T1-tumor-bearing mice. The combined treatment of H9 with AC did not show additive or synergetic anti-tumor growth effects. However, when tumor-bearing mice were co-treated with H9 and the targeted anti-tumor drug trastuzumab, a delay in tumor growth was observed. The combined treatment of H9 and trastuzumab caused an increase of natural killer (NK) cells and a decrease of myeloid-derived suppressor cells (MDSC). Taken together, H9 induces the apoptotic death of tumor cells while increasing anti-tumor immune activity through the enhancement of NK activity and diminishment of MDSC.

Effect of Neem (Azadirachta indica) oil on the progressive growth of a spontaneous T cell lymphoma

  • Mallick, Sanjaya Kumar;Gupta, Vivekanand;Singh, Mahendra Pal;Vishvakarma, Naveen Kumar;Singh, Nisha;Singh, Sukh Mahendra
    • Advances in Traditional Medicine
    • /
    • v.7 no.5
    • /
    • pp.459-465
    • /
    • 2008
  • The present study was undertaken to investigate the effect of in vivo administration of neem oil intra-peritoneally (i.p.) to mice bearing a progressively growing transplantable T cell lymphoma of spontaneous origin, designated as Daltons lymphoma (DL), on the tumor growth. Mice were administered various doses of neem oil mixed in groundnut oil, which was used as a diluting vehicle or for administration to control DL-bearing mice. Administration of neem oil resulted in an acceleration of tumor growth along with a reduction in the survival time of the tumor-bearing host. Neem oil administered DL-bearing mice showed an augmented apoptosis in splenocytes, bone marrow cells and thymocytes along with an inhibition in the anti-tumor functions of tumor-associated macrophages. Thus this study gives an altogether a novel information that neem oil instead of the popular belief of being anti-tumor and immunoaugmentary may in some tumor-bearing conditions, behave in an opposite way leading to an accelarated tumor progression along with a collapse of the host's anti-tumor machinery. These observations will thus have long lasting clinical significance, suggesting caution in use of neem oil for treatment of cancer.

LKB1/STK11 Tumor Suppressor Reduces Angiogenesis by Directly Interacting with VEGFR2 in Tumorigenesis

  • Seung Bae Rho;Hyun Jung Byun;Boh-Ram Kim;Chang Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.456-465
    • /
    • 2023
  • Cervical tumors represent a prevalent form of cancer affecting women worldwide; current treatment options involve surgery, radiotherapy, and chemotherapy. Angiogenesis, the process of new blood vessel formation, is a crucial factor in cervical tumor growth. The molecular mechanisms underlying the effects of the liver kinase B1 (LKB1/STK11) tumor suppressor protein on tumor angiogenesis have not been elucidated. Therefore, we investigated the role of LKB1 in cervical tumor angiogenesis both in vitro and in vivo in this study. Our results demonstrated that LKB1 inhibited cervical tumor angiogenesis by suppressing the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α. LKB1 directly affected both carcinoma and vascular endothelial cells, resulting in a significant reduction in tumor growth and angiogenesis. Furthermore, LKB1 was found to bind to VEGF receptor 2 (VEGFR-2) and target the VEGFR-2-mediated protein kinase B/mechanistic target of rapamycin signaling pathway in endothelial cells, thereby reducing cervical tumor growth and angiogenesis. Our study provides new insights into the molecular mechanisms underlying the anti-tumor and anti-angiogenic effects of LKB1 in cervical cancer. These findings will help develop new therapeutic strategies for cervical cancer.

Anti-tumor Effect of 4-1BBL Modified Tumor Cells as Preventive and Therapeutic Vaccine

  • Hong Sung Kim
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.312-316
    • /
    • 2022
  • We have previously reported that genetically modified tumor cells with 4-1BBL have anti-cancer effects in a CT26 mouse colorectal tumor model. In this study, genetically modified tumor cells with 4-1BBL were evaluated for their potential as candidates for preventive and therapeutic cancer vaccine. To identify the effect of preventive and therapeutic vaccine of genetically modified tumor cells with 4-1BBL, tumor growth pattern of CT26-4-1BBL as a cancer vaccine was examined compared to CT26-beta-gal. In therapeutic vaccination, CT26-WT was inoculated into mice and then vaccinated mice with doxorubicin (Dox)-treated CT26-beta-gal and CT26-4-1BBL (single or three times). Triple vaccination with Dox-treated tumor cell inhibited tumor growth compared to single vaccination. Vaccination with CT26-4-1BBL showed an efficient tumor growth inhibition compared to vaccination with CT26-beta-gal. For preventive vaccination, Dox-treated CT26-beta-gal and CT26-4-1BBL was vaccinated into mice with three times and then administered mice with CT26-WT. Preventive vaccination with CT26-4-1BBL showed no tumor growth. Preventive vaccination with CT26-beta-gal also led to tumor-free mice. These results suggest that genetically modified tumor cells with 4-1BBL can be used as therapeutic or preventive cancer vaccine.

Biological Properties of Different Types and Parts of the Dandelions: Comparisons of Anti-Oxidative, Immune Cell Proliferative and Tumor Cell Growth Inhibitory Activities

  • Lee, Sung-Hyeon;Park, Jae-Bok;Park, Hong-Ju;Cho, Soo-Muk;Park, Young-Ja;Sin, Jeong-Im
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.172-178
    • /
    • 2005
  • Dandelions have been reported to have medicinal properties and bioactive components that impact human health. However, the precise biological properties of dandelions and the parts of the plants possessing bioactive components remain uncertain. In this study, we evaluated 3 different types of dandelions based on their cultivation origin (Songpa, Uiryung, and native Uiryung types) as well as their 4 different plant parts (leaf, flower, root, skin). Each sample was extracted with $80\%$ methanol and then compared for the biological activities (anti-oxidative, immune cell proliferative and tumor cell growth inhibitory activities). All 3 types of dandelions possessed a degree of biological functions including the hydroxyl radical scavenger activity, immune cell proliferative activity and tumor cell growth inhibitory activity. However, there was no significant difference in these activities between the 3 dandelion types. Leaves of all three dandelion types showed the highest levels of all biological activities. To a lesser degree, the flower and root parts displayed biological activities. In the skin parts, anti-oxidative activity was also detected only at higher doses of dandelion extracts. Heating the dandelion leaf extract did not affect the biological activity, suggesting a heat-stable nature of the biological compounds. Taken together, these collective data suggest that dandelions, in particular their leaves, possess a high concentration of heat-resistant biological compounds, which are responsible for anti-oxidative, immune cell proliferative and tumor cell growth-inhibitory activities.

Antitumor Activity of the Novel Human Cytokine AIMP1 in an in vivo Tumor Model

  • Lee, Yeon-Sook;Han, Jung Min;Kang, Taehee;Park, Young In;Kim, Hwan Mook;Kim, Sunghoon
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.213-217
    • /
    • 2006
  • Although AIMP1 (previously known as p43) is one of three auxiliary proteins bound to a macromolecular aminoacyl tRNA complex, it is also secreted as a cytokine controlling both angiogenesis and immune responses. Here we show that systemically administered purified recombinant human AIMP1 had anti-tumor activity in mouse xenograft models. In Meth A-bearing Balb/c mice, tumor volume increased about 28 fold in the vehicle treatment group, while an increase of about 16.7 fold was observed in the AIMP1-treated group. We also evaluated the anti-tumor activity of AIMP1 in combination with a sub-clinical dose of the cytotoxic anti-tumor drug, paclitaxel. The growth of NUGC-3 human stomach cancer cells was suppressed by 84% and 94% by the combinations of 5 mg/kg paclitaxel + 25 mg/kg AIMP1 (p = 0.03), and 5 mg/kg paclitaxel + 50 mg/kg AIMP1 (p = 0.02), respectively, while 5 mg/kg paclitaxel alone suppressed growth by only 54% (p = 0.02). A similar cooperative effect of AIMP1 and paclitaxel was observed in a lung cancer xenograft model. These results suggest that AIMP1 may be useful as a novel anti-tumor agent.

Comparison Study of the Anti-tumor Effects of Hangamjedoktang(Kangaizhidu-tang) with Holotrkhia and Hangamyagjaebang(Kangaiyaocai-fang) (항암제독탕가제조와 항암양제방에 대한 비교연구)

  • 오중환;박종형;한양희;김동우;전찬용;백은기;홍의실;한지완;임영남
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.138-144
    • /
    • 2003
  • Objective : Though modern medicine has made various studies in cancer treatment, the results of the treatments are not satisfactory. Considering this, Oriental medicine can be a breakthrough in treatment of cancer, and therefore, its constant research eagerly needed. According to preceding studies, Hangamjedoktang (Kangaizhidu-tang) with Hagocho appeared to be statistically significant against cancer, and therefore to seek a better medication for cancer, Holotrichia which seemed to be effective against cancer was added to the formula, and herbs which showed an anti-tumor effect in preceding studies composed Hangamyagjaebang. The efficacy of both Hangamjedoktang with Holotrichia (HJJ) and Hangamyagjaebang (Kangaiyaocaijang) (HM) was compared. Methods : To examine the anti-cancer effect of HJJ and HM, inhibitory effect on solid tumor growth in mice induced by Sarcoma-180 (s-180), change of body and organ weight in tumor bearing mice and the activity of machrophages and lymphocytes in the spleen were examined. Results : 1. In the HJJ and HM treated groups, tumor growth was markedly decreased. 2. HJJ and HM increased the activity of ALP which is produced from the splenocytes transplanted with S-180. 3. HJJ and HM increased the ACP activity of the macrophages of the mice transplanted with S-180. Conclusion : These results suggest that HJJ and HM are good candidates for new drugs for cancer therapy.

  • PDF

Study on the Anti-tumor Effect of Gekko (천룡(天龍)의 항암효과에 대한 고찰)

  • Ahn, Tae-Kyu;Son, Chang-Gue;Jeong, Tae-Yong;Yoo, Hwa-Seung;Cho, Jung-Hyo
    • Journal of Korean Traditional Oncology
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • Gekko has been used for several diseases including cancer in Oriental medicine and fork herbalogy. Nevertheless, its origin as herbal medicine and its efficacy and mechanism as anti-tumor drug have not yet been thoroughly reported in Korea. This study aimed to investigate anti-tumor effect of Gekko through selected articles from cqvip database in China. In vitro and In vivo, Gekko could obviously inhibit tumor growth, induce tumor cells apoptosis, reduce micro-vessel density in tumor tissue through down regulating VEGF & bFGF protein expression, promote cytotoxicity of lymphocyte. Gekko could improve survival rate, relive clinical symptoms, improve quality of life, and relieve anti-tumor treatment reaction, suggesting that Gekko might be a effective anti-tumor drug.

  • PDF

Anti-tumor Effects of Penfluridol through Dysregulation of Cholesterol Homeostasis

  • Wu, Lu;Liu, Yan-Yang;Li, Zhi-Xi;Zhao, Qian;Wang, Xia;Yu, Yang;Wang, Yu-Yi;Wang, Yi-Qin;Luo, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.489-494
    • /
    • 2014
  • Background: Psychiatric patients appear to be at lower risk of cancer. Some antipsychotic drugs might have inhibitory effects on tumor growth, including penfluridol, a strong agent. To test this, we conducted a study to determine whether penfluridol exerts cytotoxic effects on tumor cells and, if so, to explore its anti-tumor mechanisms. Methods: Growth inhibition of mouse cancer cell lines by penfluridol was determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cytotoxic activity was determined by clonogenic cell survival and trypan blue assays. Animal tumor models of these cancer cells were established and to evaluate penfluridol for its anti-tumor efficacy in vivo. Unesterified cholesterol in cancer cells was examined by filipin staining. Serum total cholesterol and tumor total cholesterol were detected using the cholesterol oxidase/p-aminophenazone (CHOD-PAP) method. Results: Penfluridol inhibited the proliferation of B16 melanoma (B16/F10), LL/2 lung carcinoma (LL/2), CT26 colon carcinoma (CT26) and 4T1 breast cancer (4T1) cells in vitro. In vivo penfluridol was particularly effective at inhibiting LL/2 lung tumor growth, and obviously prolonged the survival time of mice bearing LL/2 lung tumors implanted subcutaneously. Accumulated unesterified cholesterol was found in all of the cancer cells treated with penfluridol, and this effect was most evident in LL/2, 4T1 and CT26 cells. No significant difference in serum cholesterol levels was found between the normal saline-treated mice and the penfluridol-treated mice. However, a dose-dependent decrease of total cholesterol in tumor tissues was observed in penfluridol-treated mice, which was most evident in B16/F10-, LL/2-, and 4T1-tumor-bearing mice. Conclusion: Our results suggested that penfluridol is not only cytotoxic to cancer cells in vitro but can also inhibit tumor growth in vivo. Dysregulation of cholesterol homeostasis by penfluridol may be involved in its anti-tumor mechanisms.

Exogenous Natural Glycoprotein Multiple Mechanisms of Anti-tumor Activity

  • Yuan, Hong-Liang;Liu, Xiao-Lei;Dai, Qi-Chang;Song, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1331-1336
    • /
    • 2015
  • Natural glycoproteins can induce apoptosis of tumor cells and exert anti-tumor activity by immunomodulatory functions, cytotoxic and anti-inflammation effects, and inhibition of endothelial growth factor. Given their prospects as novel agents, sources of natural antitumor glycoproteins have attracted attention and new research directions in glycoprotein biology are gradually shifting to the direction of cancer treatment and prevention of neoplastic disease. In this review, we summarize the latest findings with regard to the tumor suppressor signature of glycoproteins and underlying regulatory mechanisms.