• Title/Summary/Keyword: anti-symmetric

Search Result 130, Processing Time 0.023 seconds

Aerodynamics and Flight Control of Air Vehicle with Variable Span Morphing Wing (가변스팬 모핑날개를 가진 비행체의 공력특성 및 비행 제어)

  • Bae, Jae-Sung;Hwang, Jai-Hyuk;Park, Sang-Hyuk;Kim, Jong-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • In the aerospace field, the study on a morphing-wing is in progress to improve flight performance and perform multi flight mission. There are many concepts of morphing-wing such as camber-change, wing-twist, variable-span, and so on. In this study, the aerodynamic characteristics and flight control of an air vehicle with a variable-span morphing wing (VSMW) have been investigated. VSMW with symmetric span control(SSC) can increase cruising range of aircraft by reducing drag in various flight condition. VSMW with anti-symmetric span control(ASSC) can be used in the roll control of an aircraft. The flight control about pure rolling dynamic system and full dynamic system have been performed about the cruise missile.

Static analysis of laminated and sandwich composite doubly-curved shallow shells

  • Alankaya, Veysel;Oktem, Ahmet Sinan
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1043-1066
    • /
    • 2016
  • A new analytical solution based on a third order shear deformation theory for the problem of static analysis of cross-ply doubly-curved shells is presented. The boundary-discontinuous generalized double Fourier series method is used to solve highly coupled linear partial differential equations with the mixed type simply supported boundary conditions prescribed on the edges. The complementary boundary constraints are introduced through boundary discontinuities generated by the selected boundary conditions for the derivation of the complementary solution. The numerical accuracy of the solution is compared by studying the comparisons of deflections, stresses and moments of symmetric and anti-symmetric laminated shells with finite element results using commercially available software under uniformly distributed load. Results are in good agreement with finite element counterparts. Additional results of the symmetric and anti-symmetric laminated and sandwich shells under single point load at the center and pressure load, are presented to provide data for the unsolved boundary conditions, benchmark comparisons and verifications.

Design and Analysis of Linear Ultrasonic Motor Using two Langevin Type Transducer (2개의 Langevin 진동자를 이용한 선형 초음파 모터의 설계와 해석)

  • Seo, San-Dong;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.187-190
    • /
    • 2004
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic liner motor consists of two Lngevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric mode, the transducer must have a 90 degree phase difference of voltage. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used. The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured.

  • PDF

Particle displacement distributions of energy-trapped thickness shear vibrations in the piezoelectric substrate (압전체 기판에서 에너지 포획된 두께 전단진동의 변위분포)

  • 이개명
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.954-963
    • /
    • 1996
  • Particle displacement distributions of the fundamental thickness shear vibration mode and overtone modes in an energy-trapped single resonator and an energy-trapped double acoustically coupled filter were calculated. The effects of the width of a pair of partial eletrodes and the magnitude of the plate back of the resonator on the particle displacement distributions of its symmetric vibration mode and anti-symmetric vibration mode were investigated. And the effects of the width of a pair of partial eletrodes, the width of the gap between two pairs of partial electrodes and the magnitude of the plate back of the filter on the particle displacement distributions of its symmetric vibration mode and anti-symmetric vibration mode were investigated.

  • PDF

Design and FEA of Ultrasonic Linear Motor Using Two Langevin Piezoelectirc Vibrator (2개의 란쥬반형 압전 진동자를 이용한 초음파 리니어 모터의 설계와 유한요소해석)

  • 최명일;박태곤;정현호;이재형;정영호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.669-675
    • /
    • 2003
  • Transducer for ultrasonic linear motor with symmetric and anti- symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. As a result, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer.

Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation (3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구)

  • Lee, Kyung-Min;Yoon, Soon-Gil;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

Distal acquired demyelinating symmetric neuropathy associated with anti-GM1 and anti-GD1b antibodies

  • Ko, Keun Hyuk;Jwa, Seung-Joo;Park, Sung Joo;Kang, Sa-Yoon
    • Annals of Clinical Neurophysiology
    • /
    • v.19 no.1
    • /
    • pp.54-57
    • /
    • 2017
  • Distal acquired demyelinating symmetric (DADS) neuropathy is a variant form of chronic inflammatory demyelinating polyradiculoneuropathy. A 54-year-old man presented with gait disturbance owing to weakness in both legs. Nerve conduction studies showed demyelinating sensorimotor polyneuropathy, and laboratory studies demonstrated anti-GM1 and anti-GD1b IgG antibodies, but no anti-myelin associated glycoprotein activity. We suggest that an antiganglioside antibodies assay needs to be applied when DADS neuropathy is suspected in order to improve the classification of dysimmune neuropathies.

Hypersurfaces of an almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Non-metric Connection

  • Ahmad, Mobin;Haseeb, Abdul;Ozgur, Cihan
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.533-543
    • /
    • 2009
  • We define a quarter symmetric non-metric connection in an almost r-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric non-metric connection.

HYPERSURFACES OF ALMOST γ-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Haseeb, Abdul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.477-487
    • /
    • 2009
  • We define a quarter symmetric metric connection in an almost r-paracontact Riemannian manifold and we consider invariant, noninvariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection.

Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures

  • Chahar, Ravindra Singh;Ravi Kumar, B.
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.387-396
    • /
    • 2019
  • This paper deals with the effect of ply orientation and control gain on tip transverse displacement of functionally graded beam layer for both active constrained layer damping (ACLD) and passive constrained layer damping (PCLD) system. The functionally graded beam is taken as host beam with a bonded viscoelastic layer in ACLD beam system. Piezoelectric fiber reinforced composite (PFRC) laminate is a constraining layer which acts as actuator through the velocity feedback control system. A finite element model has been developed to study actuation of the smart beam system. Fractional order derivative constitutive model is used for the viscoelastic constitutive equation. The control voltage required for ACLD treatment for various symmetric ply stacking sequences is highest in case of longitudinal orientation of fibers of PFRC laminate over other ply stacking sequences. Performance of symmetric and anti-symmetric ply laminates on damping characteristics has been investigated for smart beam system using time and frequency response plots. Symmetric and anti-symmetric ply laminates significantly reduce the amplitude of the vibration over the longitudinal orientation of fibers of PFRC laminate. The analysis reveals that the PFRC laminate can be used effectively for developing very light weight smart structures.