• Title/Summary/Keyword: anti-skin aging

Search Result 418, Processing Time 0.025 seconds

Morphological Changes in the Skin of Hairless Mouse Fed Various Kimchi Diet (김치종류별 식이가 Hairless Mouse 피부의 형태학적 변화에 미치는 영향)

  • Ryu, Bog-Mi;Ryu, Seung-Hee;Yang, Young-Churl;Lee, Yu-Soon;Jeon, Young-Soo;Moon, Gap-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1469-1475
    • /
    • 2004
  • Skin is the most frequently exposed tissues to oxidative stress from exogenous and endogenous sources. Dietary antioxidants, which suppress oxidative stress including reactive oxygen metabolites, play an important role in protecting skin from deleterious reactive oxygen species. Kimchi containing lots of antioxidative compounds shows anti-aging effect on skin. Therefore the morphologic changes on the skin of hairless mice fed diets containing Korean cabbage, mustard leaf, and buchu kimchi for 16 weeks were determined. Although epidermal thickness was decreased with age, kimchi prevented this thinning of epidermis compared to control group. In kimchi groups, the staining area of cytokeratin was smaller and stratum corneum was thinner than control group. It suggests that various kinds of kimchi diets prevent the increase of keratinization in epidermis with aging. Type Ⅳ collagen, a major structural protein of basement membrane supporting matrices, existed greater amount in kimchi groups than control group, especially in mustard leaf kimchi group. Rough endoplasmic reticulum (RER) of fibroblast was well developed in dermis of Korean cabbage and mustard leaf kimchi groups, which means collagen synthesis at dermis increased in those kimchi groups. This morphological changes of skin suggest that kimchi consumption can retard skin aging due to the presence of antioxidant and anti-aging compounds, especially some components of mustard leaf kimchi may largely affect on the skin rejuvenescence.

Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin

  • Hwang, Eunson;Park, Sang-Yong;Yin, Chang Shik;Kim, Hee-Taek;Kim, Yong Min;Yi, Tae Hoo
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • Background: Human skin undergoes distinct changes throughout the aging process, based on both intrinsic and extrinsic factors. In a process called photoaging, UVB irradiation leads to upregulation of matrix metalloproteinase-1, which then causes collagen degradation and premature aging. Mixtures of medicinal plants have traditionally been used as drugs in oriental medicine. Based on the previously reported antioxidant properties of Panax ginseng Meyer and Crataegus pinnatifida, we hypothesized that the mixture of P. ginseng Meyer and C. pinnatifida (GC) would have protective effects against skin aging. Methods: Anti-aging activity was examined both in human dermal fibroblasts under UVB irradiation by using Western blot analysis and in healthy human skin by examining noninvasive measurements. Results: In vitro studies showed that GC improved procollagen type I expression and diminished matrix metalloproteinase-1 secretion. Based on noninvasive measurements, skin roughness values, including total roughness (R1), maximum roughness (R2), smoothness depth and average roughness (R3), and global photodamage scores were improved by GC application. Moreover, GC ameliorated the high values of smoothness depth (R4), which means that GC reduced loss of skin moisture. Conclusion: These results suggest that GC can prevent aging by inhibiting wrinkle formation and increasing moisture in the human skin.

Anti-wrinkle effect of 3-O-cetyl-L-ascorbic acid (3-O-cetyl-L-ascorbic acid의 주름 개선 효과)

  • Park, Chang-Min;Lee, Soon-Young;Joung, Min-Seok;Choi, Jong-Wan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.4
    • /
    • pp.303-309
    • /
    • 2008
  • Deficiency of collagen regeneration, denaturalization of elastic fibers, and promotion of reactive oxygen species formation are important factors for deterioration of skin function. They induce wrinckle formation and decrease skin elasticity. Vitamin C and its derivatives have been used as cosmetic ingredients for anti-aging effects but their chemical instability has been a major problem. In an attempt to develop a novel anti-aging agent with a improved stability and bioactivity, the anti-wrinkle effect of 3-O-cetyl-L-ascorbic acid (VCCE), a new vitamin C derivative, was investigated in this study. VCCE increased procollagen type-1 synthesis in a dose-dependent manner (149% at 0.002%) in cultured fiboroblasts. Its potent anti-wrinkle effect was confirmed in vivo by analyzing human skin replica by a visiometer and the PRIMOS system. It did not cause any irritation in human patch test. Taken together, our findings suggest that the VCCE has potential benefits applicable to cosmetics for anti-wrinkle effects.

Antioxidant Activity of Cercis chinensis and Its Protective Effect on Skin Aging

  • Na, Min-Kyun;Bae, Ki-Hwan;Hong, Nam-Doo;Yoo, Jae-Kuk;Nobuhiko Miwa
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.291-312
    • /
    • 2003
  • Reactive oxygen species are capable of damaging biomolecules such as lipids, proteins, and DNA, which can not only lead to various diseases, but also oxidative damage resulting aging. In our previous study, Cercis chinensis (Leguminosae) showed a potent antioxidant activity. Nineteen compounds were isolated through antioxidant activity-guided fractionation. The C. chinensis extract and some of the constituents exhibited a potent antioxidant activity on the free radicals and lipid peroxidation and a notable protective effect on the t-BuOOH induced oxidative damage. In vivo test of skin damage induced by UVB irradiation, the extract of C. chinensis and a constituent, piceatannol, exhibited a significant protective effect. The life-span of the HEK-N/F cells were extended by 1.21-2.12 fold as a result of the continuous administration of 3 $\mu\textrm{g}$/ml of the C. chinensis extract and the active constituents compared to that of the control. These observations were attributed to the inhibitory effect of the C. chinensis extract and its constituents on the age-dependent shortening of the telomere. Thus, C. chinensis was demonstrated to protect the skin cells against oxidative stress and inhibit thereby the cellular aging, followed by expectation as anti-aging cosmetic ingredient.

  • PDF

Development of wrinkled skin-on-a-chip (WSOC) by cyclic uniaxial stretching

  • Lim, Ho Yeong;Kim, Jaewon;Song, Hyun Jeong;Kim, Kyunghee;Choi, Kyung Chan;Park, Sungsu;Sung, Gun Yong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.238-245
    • /
    • 2018
  • The skin experiences constant physical stimuli, such as stretching. Exposure to excessive physical stimuli stresses the skin and can accelerate aging. In this study, we applied a method that allowed human fibroblasts and keratinocytes to be perfused with media to form 3D skin equivalents that were then uniaxially 10%-stretched for 12 h per day (at either 0.01 or 0.05 Hz) for up to 7 days to form wrinkled skin-on-a-chip (WSOC). There was more wrinkling seen in skin equivalents under 0.01 Hz uniaxial stretching than there was for non-stretched skin equivalents. At 0.05 Hz, the stratum corneum almost disappeared from the skin equivalents, indicating that stretching was harmful for the epidermis. At both frequencies, the production of collagen and related proteins in the skin equivalents, such as fibronectin 10 and keratin, decreased more than those in the non-stretched equivalents, indicating that the dermis also suffered from the repeated tensile stress. These results suggest that WSOCs can be used to examine skin aging and as an in vitro tool to evaluate the efficacy of anti-wrinkle cosmetics and medicines.

The Study on the Potential Anti-aging Properties of Prunella vulgaris Extract In Vitro and In Vivo (하고초 추출물의 항노화 효과에 관한 연구)

  • Hong, Eun-Suk;Ahn, Gi-Woong;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2008
  • In this study, the potential anti-aging properties of Prunella vulgaris extract were investigated. According to our results, Prunella vulgaris extract increased collagen synthesis(74.7% at 250 ${\mu}g/mL$) and decreased on MMP-1 synthesis(90.2% at 200 ${\mu}g/mL$) and elastase activity(43.7% at 2.0%). Furthermore, it also showed free radical scavenging activity(76.9% at 2.0%) and reduced $H_2O_2$-induced cytoxicity(49.9% at 2.0%). A double-blind clinical study to investigate the effect of Prunella vulgaris extract on the skin's surface was conducted with 22 healthy volunteers, aged 34 to 48 years. The volunteers applied a cream formula with 4.0% of Prunella vulgaris extract, or placebo cream, on each crow's feet twice a day for 12 weeks. Skin wrinkles were evaluated with the naked eye and instrumental image analysis of silicone replicas, followed by statistical analysis. Twelve weeks after application of cream formula with 4.0% of Prunella vulgaris extract, we found significant improvement of facial wrinkle. Moreover, silicone replica analysis confirmed notable improvement in average of R2 and R3 at 12 weeks(p<0.05). These results demonstrate that Prunella vulgaris provides a remarkable and significant tensor and anti-wrinkle effect on the skin, which could be of great use in anti-aging skin care products.

Anti-aging Effect of Artocarpin in UVA-irradiated Normal Human Epidermal Keratinocytes (자외선 조사에 의해 노화된 인간각질형성세포에서 Artocarpin의 항노화 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • The aim of this study was to investigate the epidermal moisturizing effects of artocarpin on normal human epidermal keratinocytes (NHEKs). To investigate the effects of artocarpin on NHEKs, cell viability and the expression of mRNAs related to skin hydration were measured. In addition, hyaluronic acid (HA)-ELISA assay was performed. Here, the effects of artocarpin on AQP3, HAS2, KRT1, and KRT10 mRNA expression, and on HA production, following UVA treatment were reported. The Quantitative real-time PCR results demonstrate that artocarpin increased AQP3, HAS2, KRT1, and KRT10 mRNA levels. The HA-ELISA assay revealed that artocarpin also increased HA production in NHEKs. Through these experiments, the epidermal moisturizing effects of artocarpin have been elucidated, providing evidence that artocarpin may be a potent cosmetic ingredient in skin anti-aging and moisturizing products. Based on these results, I anticipate that further research on the mechanisms of action of artocarpin may allow the development of not only cosmetics, but also medicines and healthcare foods.

3,4-Dihydroxytoluene suppresses UVB-induced wrinkle formation by inhibiting Raf-1

  • Park, Sang-Hee;Kang, Nam Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.385-395
    • /
    • 2020
  • This study examined the effect of 3,4-dihydroxytoluene (DHT) on UVB-induced photoaging and determined its molecular mechanisms, using HaCaT human keratinocytes and SKH-1 hairless mice. DHT suppressed UVB-induced matrix metalloproteinase-1 (MMP-1) expression in HaCaT cells. In vivo data from mouse skin supported that DHT decreased UVB-induced wrinkle formation, epidermal thickness, and matrix metalloproteinase-13 (MMP-13) expression. DHT appeared to exert its anti-aging effects by suppressing UVB-induced Raf-1 kinase activity and subsequent attenuation of UVB-induced phosphorylation of MEK, ERK, and p90RSK in HaCaT cells. In vitro and in vivo pull-down assays revealed that DHT bound with Raf-1 in ATP-noncompetitive manner. Overall, DHT appears to anti-photoaging effects in vitro and in vivo through the suppression of Raf-1 kinase activity and may have potential as a treatment for the prevention of skin aging.

Anti-aging Effect of Agarum cribrosum in UVA-irradiated Normal Human Epidermal Keratinocytes (자외선 조사에 의해 노화된 인간각질형성세포에서 구멍쇠미역 추출물의 항노화 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.4
    • /
    • pp.228-233
    • /
    • 2021
  • This research was carried out to investigate the moisturizing effects of Agarum cribrosum extract on normal human epidermal keratinocytes (NHEKs). Moisturizing effects of A. cribrosum extract on NHEKs were measured by quantitative realtime RT-PCR to verify the gene expressions related to skin hydration, hyaluronic acid (HA)-ELISA to detect HA production, and cell viability assays. A. cribrosum extract increased the mRNA levels of the AQP3 and HAS2 genes and HA production in NHEKs. On the other hand, A. cribrosum extract decreased the mRNA level of the KRT1 and KRT10 genes known as differentiated keratinocyte marker in NHEKs. This research showed the moisturizing effects of A. cribrosum extract. The results indicate that A. cribrosum extract can be a potent functional ingredient for skin hydration and anti-aging products. Further study is warranted regarding the use of A. cribrosum extract to develop not only cosmetics but also food and medicine.

Safflower Seed Oil and Its Active Compound Acacetin Inhibit UVB-Induced Skin Photoaging

  • Jeong, Eun Hee;Yang, Hee;Kim, Jong-Eun;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1567-1573
    • /
    • 2020
  • Ultraviolet (UV) is one of the major factors harmful to skin health. Irradiation with ultraviolet accelerates the decline of skin function, causing the skin to have deep wrinkles, dryness, decreased procollagen production, and degradation of collagen. Novel materials are needed to prevent the aging of the skin by blocking the effects of UV. Safflower seed oil (Charthamus tinctorius L., SSO) contains significantly high levels of unsaturated fatty acids and phytochemicals. SSO has been traditionally used in China, Japan, and Korea to improve skin and hair. Our objective in this study was to determine the effect of SSO and its active compound acacetin on UVB-induced skin photoaging in HaCaT cells and human dermal fibroblasts (HDF). SSO inhibited UVB-induced matrix metalloproteinase-1 (MMP-1) at both protein and mRNA levels in HaCaT cells and HDF. MMP-1 is known to play important roles in collagen degradation and wrinkle formation. Acacetin, a type of flavonoid, is present in SSO. Similar to SSO, acacetin also inhibited UVB-induced MMP-1 protein and mRNA levels in HaCaT cells and HDF. MMP-1 mRNA is primarily regulated by the mitogen-activated kinase (MAPK) signaling pathway. Acacetin regulated the phosphorylation of JNK1/2 and c-jun, but did not inhibit the phosphorylation of ERK1/2, p38 and AKT. Taken together, these results indicate that SSO and its active compound acacetin can prevent UVB-induced MMP-1 expression, which leads to skin photoaging, and may therefore have therapeutic potential as an anti-wrinkle agent to improve skin health.