DOI QR코드

DOI QR Code

Development of wrinkled skin-on-a-chip (WSOC) by cyclic uniaxial stretching

  • Lim, Ho Yeong (Cooperative Course of Nano-Medical Device Engineering, Hallym University) ;
  • Kim, Jaewon (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Song, Hyun Jeong (Cooperative Course of Nano-Medical Device Engineering, Hallym University) ;
  • Kim, Kyunghee (Cooperative Course of Nano-Medical Device Engineering, Hallym University) ;
  • Choi, Kyung Chan (Department of Pathology, Collage of Medicine, Hallym University) ;
  • Park, Sungsu (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Sung, Gun Yong (Cooperative Course of Nano-Medical Device Engineering, Hallym University)
  • Received : 2018.04.12
  • Accepted : 2018.07.28
  • Published : 2018.12.25

Abstract

The skin experiences constant physical stimuli, such as stretching. Exposure to excessive physical stimuli stresses the skin and can accelerate aging. In this study, we applied a method that allowed human fibroblasts and keratinocytes to be perfused with media to form 3D skin equivalents that were then uniaxially 10%-stretched for 12 h per day (at either 0.01 or 0.05 Hz) for up to 7 days to form wrinkled skin-on-a-chip (WSOC). There was more wrinkling seen in skin equivalents under 0.01 Hz uniaxial stretching than there was for non-stretched skin equivalents. At 0.05 Hz, the stratum corneum almost disappeared from the skin equivalents, indicating that stretching was harmful for the epidermis. At both frequencies, the production of collagen and related proteins in the skin equivalents, such as fibronectin 10 and keratin, decreased more than those in the non-stretched equivalents, indicating that the dermis also suffered from the repeated tensile stress. These results suggest that WSOCs can be used to examine skin aging and as an in vitro tool to evaluate the efficacy of anti-wrinkle cosmetics and medicines.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Hallym University

References

  1. C. Kindred, C.O. Oresajo, R.M. Halder, Nutr. Cosmet. (2009) 47.
  2. A.V. Rawlings, C.R. Harding, Dermatol. Ther. 17 (2004) 43. https://doi.org/10.1111/j.1396-0296.2004.04S1005.x
  3. G.J. Fisher, S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, J.J. Voorhees, Arch. Dermatol. 138 (2002) 1462.
  4. L. Rittie, G.J. Fisher, Ageing Res. Rev. 1 (2002) 705. https://doi.org/10.1016/S1568-1637(02)00024-7
  5. H.E. Abaci, K. Gledhill, Z. Guo, A.M. Christiano, M.L. Shuler, Lab Chip 15 (2015) 882. https://doi.org/10.1039/C4LC00999A
  6. C.M.A. Reijnders, A. van Lier, S. Roffel, D. Kramer, R.J. Scheper, S. Gibbs, Tissue Eng. Part A 21 (2015) 2448. https://doi.org/10.1089/ten.tea.2015.0139
  7. J. Diekmann, L. Alili, O. Scholz, M. Giesen, O. Holtkotter, P. Brenneisen, Exp. Dermatol. 25 (2016) 56. https://doi.org/10.1111/exd.12866
  8. S.V. Murphy, A. Atala, Nat. Biotechnol. 32 (2014) 773. https://doi.org/10.1038/nbt.2958
  9. L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P.M. Vogt, B. Chichkov, Biotechnol. Bioeng. 109 (2012) 1855. https://doi.org/10.1002/bit.24455
  10. L. Koch, S. Kuhn, H. Sorg, M. Gruene, S. Schlie, R. Gaebel, B. Polchow, K. Reimers, S. Stoelting, N. Ma, P.M. Vogt, G. Steinhoff, B. Chichkov, Tissue Eng. Part C 16 (2010) 847. https://doi.org/10.1089/ten.tec.2009.0397
  11. A. Fatehullah, S.H. Tan, N. Barker, Nat. Cell Biol. 18 (2016) 246. https://doi.org/10.1038/ncb3312
  12. S. Lee, S.-P. Jin, Y.K. Kim, G.Y. Sung, J.H. Chung, J.H. Sung, Biomed. Microdevices 19 (2017) 22. https://doi.org/10.1007/s10544-017-0156-5
  13. N. Mori, Y. Morimoto, S. Takeuchi, Proc. IEEE Int. Conf. Micro Electro Mech. Syst. (2015) 351.
  14. N. Mori, Y. Morimoto, S. Takeuchi, Proc. IEEE Int. Conf. Micro Electro Mech. Syst. (2016) 259.
  15. D. Lu, X. Liu, Y. Gao, B. Huo, Y. Kang, J. Chen, S. Sun, L. Chen, X. Luo, M. Long, PLoS One 8 (2013) e74563. https://doi.org/10.1371/journal.pone.0074563
  16. H.J. Song, H.Y. Lim, W. Chun, K.C. Choi, J.H. Sung, G.Y. Sung, J. Ind. Eng. Chem. 56 (2017) 375. https://doi.org/10.1016/j.jiec.2017.07.034
  17. Y. Xia, G.M. Whitesides. oft Lithogr.Annu. Rev. Mater. Sci. 1998; 28: 153 https://doi.org/10.1146/annurev.matsci.28.1.153
  18. L.F. Borges, P.S. Gutierrez, H.R.C. Marana, S.R. Taboga, Micron 38 (2007) 580. https://doi.org/10.1016/j.micron.2006.10.005
  19. Z. Zaidi, S. Lanigan, Skin: structure and function Dermatology Clin. Pract., Springer, London, 1, 2010.

Cited by

  1. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective vol.9, pp.10, 2018, https://doi.org/10.3390/mi9100536
  2. Cell Nanomechanics Based on Dielectric Elastomer Actuator Device vol.11, pp.1, 2018, https://doi.org/10.1007/s40820-019-0331-8
  3. 3D In Vitro Human Organ Mimicry Devices for Drug Discovery, Development, and Assessment vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/6187048
  4. Testing the Effectiveness of Curcuma longa Leaf Extract on a Skin Equivalent Using a Pumpless Skin-on-a-Chip Model vol.21, pp.11, 2020, https://doi.org/10.3390/ijms21113898
  5. Microfluidic Skin‐on‐a‐Chip Models: Toward Biomimetic Artificial Skin vol.16, pp.39, 2018, https://doi.org/10.1002/smll.202002515
  6. Development of Skin-On-A-Chip Platforms for Different Utilizations: Factors to Be Considered vol.12, pp.3, 2018, https://doi.org/10.3390/mi12030294
  7. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology vol.121, pp.8, 2021, https://doi.org/10.1021/acs.chemrev.0c00752
  8. Skin-on-a-chip models: General overview and future perspectives vol.5, pp.3, 2018, https://doi.org/10.1063/5.0046376
  9. Development of an Aged Full-Thickness Skin Model Using Flexible Skin-on-a-Chip Subjected to Mechanical Stimulus Reflecting the Circadian Rhythm vol.22, pp.23, 2021, https://doi.org/10.3390/ijms222312788