• Title/Summary/Keyword: anti-proliferative activity

Search Result 250, Processing Time 0.038 seconds

Anti-Proliferative Activity and Apoptosis Induction of an Ethanolic Extract of Boesenbergia pandurata (Roxb.) Schlecht. against HeLa and Vero Cell Lines

  • Listyawati, Shanti;Sismindari, Sismindari;Mubarika, Sofia;Murti, Yosi Bayu;Ikawati, Muthi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.183-187
    • /
    • 2016
  • Rhizomes of Boesenbergia pandurata (Roxb.) Schlecht have been reported to contain active compounds with anticancer properties. This research was carried out to examine anti-proliferative and apoptotic induction against HeLa and Vero cells-line. Dried powder of B. pandurata rhizomes was extracted by a maceration method using 90% ethanol. Cytotoxic assays to determine $IC_{50}$ and anti-proliferative effects were carried out by MTT methods. Observation of apoptosis was achieved with double staining using acridine orange and ethidium bromide. The results showed that ethanolic extract of B. pandurata was more cytotoxic against HeLa cells ($IC_{50}$ of $60{\mu}g/mL$) than Vero cells ($IC_{50}$ of $125{\mu}g/mL$). The extract had higher anti-proliferative activity as well as apoptotic induction in HeLa than Vero cells. Therefore, it was concluded that the ethanolic extract of B. pandurata had anti-proliferative as well as apoptosis induction activity dependent on the cell type.

Fermentative Characteristics and Anti-Proliferative Activity against Mouse Carcinoma Cell Line of Kimchi prepared with Functional Cabbage (기능성 배추 김치의 발효 특성과 암세포 증식저해능)

  • Yu, Kwang-Won;Lee, Seong-Hyun;Shin, Eun-Hae;Hwang, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.1007-1014
    • /
    • 2017
  • To compare functional Chinese cabbage('Amtak' baechu; F1 hybrid cultivar between Brassica rapa and B. perkinensis, AB) with general Chinese cabbage ('Chunkwang' baechu; general spring cultivar, CB), two kinds of kimchi(ABK and CBK) prepared with AB and CB cultivar were fermented at $10^{\circ}C$ for 10 days. Their fermentative characteristics and anti-proliferative activities against mouse carcinoma cell lines were investigated. General kimchi(CBK) showed mature pH on the $6^{th}$ day of fermentation, whereas functional kimchi(ABK) reached pH on the $9^{th}$ day. CBK also exhibited acidity of mature stage on the $6^{th}$ day, but ABK reached mature acidity on the $9^{th}$ day. Although ABK and CBK were salted in the same condition, ABK had lower salinity than CBK, throughout the fermentation time. The highest total bacterial and lactic bacterial counts of CBK showed on the $8^{th}$ day of fermentation, but ABK showed the highest total bacterial and lactic bacterial counts on the $10^{th}$ day. The texture of ABK was harder than CBK for fermentation time. This seems to be corrleated with the slower fermentation rate of ABK. ABK showed significantly higher anti-proliferative activity (54.6% cell viability of control) in B16BL6 at $1,000{\mu}g/mL$. ABK was also higher in anti-proliferative activity than CBK throughout the fermentation time. However, there was no significant difference in the anti-proliferative activity of ABK between the fermentation times. In conclusion, fermentation of ABK showed a better texture, due to the slow fermentation rate and more anti-proliferative activity against mouse carcinoma cell line than those of CBK.

Effect of Citrus macroptera Fruit Pulp Juice on Alteration of Caspase Pathway Rendering Anti-Proliferative Activity against Ehrlich's Ascites Carcinoma in Mice

  • Hasan, Md. Mahmudul;Islam, Md. Shihabul;Hoque, Kazi Md. Faisal;Haque, Ariful;Reza, Md Abu
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.271-277
    • /
    • 2019
  • Citrus macroptera (Rutaceae) has long been used in folk medicine in Bangladesh. Considering the folkloric context, this study was aimed to scrutinize anti-proliferative activity of C. macroptera fruit pulp juice (CMFPJ) against Ehrlich's ascites carcinoma (EAC). The anti-proliferative capacity of CMFPJ was investigated and confirmed primarily using MTT assay. In vivo anti-proliferative aptitude of CMFPJ was investigated with 25, 50, and 100 mg/kg/day intraperitoneal (i.p.) treatment. Anti-proliferative efficacy of CMFPJ was assessed based on EAC growth inhibition. CMFPJ inhibited EAC growth in vitro in a dose-dependent manner. And the percentages of in vivo EAC growth inhibition were 19.53, 49.2, and 68.9% at 25, 50, and 100 mg/kg CMFPJ respectively. CMFPJ significantly induced expression of apoptosis regulatory genes caspase-8, caspase-9, cytochrome-c, and caspase-3. This considerable anti-cancer activity was perhaps due to combinatorial effect of lectin, polyphenols, and flavonoids present in CMFPJ.

Novel Alkylaminopyridazine Derivatives: Synthesis and Their Anti-proliferative Effects against MCF-7 Cells

  • Kim, Chaewon;Park, Eun-Hee;Park, Myung-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3317-3321
    • /
    • 2013
  • A series of new 3-alkylamino-6-allylthio-pyridazine derivatives was synthesized through allythiolation and amino-de-halogenation and were expected to have anti-proliferative activity. 6-Allylthio-3-chloropyridazine was prepared from the reaction of 3,6-dichloropyridazine with allylmercaptan and sodium hydroxide. The alkylamines such as methylamine and the dialkylamines such as dimethylamine were introduced into the 3-position of the pyridazine ring. These new compounds showed anti-proliferative activities against MCF-7 human breast cancer cells in CCK-8 assays. These compounds are thus promising candidates for chemotherapy of breast cancer. Two compounds, 14 and 15, showed higher potencies for inhibiting growth of breast cancer cells than did 5FU. This suggests the potential anti-proliferative activity of these compounds.

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Chromatographically Purified Porphyran from Porphyra yezoensis Effectively Inhibits Proliferation of Human Cancer Cells

  • Kwon, Mi-Jin;Nam, Taek-Jeong
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.873-878
    • /
    • 2007
  • In this study, we isolated porphyran was isolated from the red seaweed Porphyra yezoensis and assessed in terms of in vitro anti-proliferative activity. Sequential anion-exchange and gel-filtration chromatography led to purification of 3 porphyrans of different molecular masses, which contained <$50\;{\mu}g/mL$ protein and >$10\;{\mu}g/mL$ porphyran. Crude porphyran inhibited cell growth in a dose-dependent manner (0-5 mg/mL). When HT-29 colon cancer cells and AGS gastric cancer cells were cultured with various concentrations of the purified porphyran, cancer cell growth was inhibited by 50% at a low concentration (5 or $10\;{\mu}g/mL$). Furthermore, the polysaccharide portion of the porphyran preparation, rather than the protein portion, is the most effective at inhibiting cancer cell proliferation via apoptosis, as indicated by increased caspase-3 activity. Our results indicate that purified porphyran has significant in vitro anti-proliferative activity (p<0.05).

Biological Properties of Different Types and Parts of the Dandelions: Comparisons of Anti-Oxidative, Immune Cell Proliferative and Tumor Cell Growth Inhibitory Activities

  • Lee, Sung-Hyeon;Park, Jae-Bok;Park, Hong-Ju;Cho, Soo-Muk;Park, Young-Ja;Sin, Jeong-Im
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.172-178
    • /
    • 2005
  • Dandelions have been reported to have medicinal properties and bioactive components that impact human health. However, the precise biological properties of dandelions and the parts of the plants possessing bioactive components remain uncertain. In this study, we evaluated 3 different types of dandelions based on their cultivation origin (Songpa, Uiryung, and native Uiryung types) as well as their 4 different plant parts (leaf, flower, root, skin). Each sample was extracted with $80\%$ methanol and then compared for the biological activities (anti-oxidative, immune cell proliferative and tumor cell growth inhibitory activities). All 3 types of dandelions possessed a degree of biological functions including the hydroxyl radical scavenger activity, immune cell proliferative activity and tumor cell growth inhibitory activity. However, there was no significant difference in these activities between the 3 dandelion types. Leaves of all three dandelion types showed the highest levels of all biological activities. To a lesser degree, the flower and root parts displayed biological activities. In the skin parts, anti-oxidative activity was also detected only at higher doses of dandelion extracts. Heating the dandelion leaf extract did not affect the biological activity, suggesting a heat-stable nature of the biological compounds. Taken together, these collective data suggest that dandelions, in particular their leaves, possess a high concentration of heat-resistant biological compounds, which are responsible for anti-oxidative, immune cell proliferative and tumor cell growth-inhibitory activities.

Anti-proliferative and Anti-telomerase Activity of Curcuma Rhizome Extract on Oral Squamous Cell Carcinoma and Osteosarcoma Cells

  • Kim, Kyung-Jin;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • v.32 no.4
    • /
    • pp.135-141
    • /
    • 2007
  • Anti-proliferation of methanol extract of Curcuma rhizome on oral squamous cell carcinoma (KB) and osteosarcoma (HOS) cells were investigated. In order to elucidate the involvement of telomerase inhibitory activity as a part of anti-proliferative effect of Curcuma rhizome on cancer cells, we measured telomerase activity in Curcuma rhizome extract-treated cancer cells. The concentration inhibited cell proliferation to 50% $(IC_{50})$ of the methanol extract of Curcuma rhizome against oral squamous cell carcinoma (KB) cells and osteosarcoma (HOS) cells were 21.30 ${\mu}g/ml$ and 39.3${\mu}g/ml$, respectively. The methanol extract of Curcuma rhizome showed inhibitory telomerase inhibitory effect which is required for cancer cell immortality. Therefore, it seems that the anticancer effect of methanol extract of Curcuma rhizome is at least partially due to telomerase inhibitory effect. Five fraction samples were prepared according to its polarity differences and analyzed anti-proliferative effects of each fraction samples on oral squamous cell carcinoma and osteosarcoma cells. Anticancer effect was observed in dichloromethane, and ethylacetate fractions. The highest anticancer effect was found in dichloromethane fraction which had $IC_{50}$ value of 23.3 ${\mu}g/ml$ and 10.5${\mu}g/ml$ against oral squamous cell carcinoma (KB) cells and osteosarcoma (HOS) cells, respectively.

Anti-Proliferative Activities of Vasicinone on Lung Carcinoma Cells Mediated via Activation of Both Mitochondria-Dependent and Independent Pathways

  • Dey, Tapan;Dutta, Prachurjya;Manna, Prasenjit;Kalita, Jatin;Boruah, Hari Prasanna Deka;Buragohain, Alak Kumar;Unni, Balagopalan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.409-416
    • /
    • 2018
  • Vasicinone, a quinazoline alkaloid from Adhatoda vasica Nees. is well known for its bronchodilator activity. However its anti-proliferative activities is yet to be elucidated. Here-in we investigated the anti-proliferative effect of vasicinone and its underlying mechanism against A549 lung carcinoma cells. The A549 cells upon treatment with various doses of vasicinone (10, 30, 50, $70{\mu}M$) for 72 h showed significant decrease in cell viability. Vasicinone treatment also showed DNA fragmentation, LDH leakage, and disruption of mitochondrial potential, and lower wound healing ability in A549 cells. The Annexin V/PI staining showed disrupted plasma membrane integrity and permeability of PI in treated cells. Moreover vasicinone treatment also lead to down regulation of Bcl-2, Fas death receptor and up regulation of PARP, BAD and cytochrome c, suggesting the anti-proliferative nature of vasicinone which mediated apoptosis through both Fas death receptors as well as Bcl-2 regulated signaling. Furthermore, our preliminary studies with vasicinone treatment also showed to lower the ROS levels in A549 cells and have potential free radical scavenging (DPPH, Hydroxyl) activity and ferric reducing power in cell free systems. Thus combining all, vasicinone may be used to develop a new therapeutic agent against oxidative stress induced lung cancer.

Anti-proliferative Activity of T-bet

  • Oh, Yeon Ji;Shin, Ji Hyun;Won, Hee Yeon;Hwang, Eun Sook
    • IMMUNE NETWORK
    • /
    • v.15 no.4
    • /
    • pp.199-205
    • /
    • 2015
  • T-bet is a critical transcription factor that regulates differentiation of Th1 cells from $CD4^+$ precursor cells. Since T-bet directly binds to the promoter of the IFN-${\gamma}$ gene and activates its transcription, T-bet deficiency impairs IFN-${\gamma}$ production in Th1 cells. Interestingly, T-bet-deficient Th cells also display substantially augmented the production of IL-2, a T cell growth factor. Exogenous expression of T-bet in T-bet deficient Th cells rescued the IFN-${\gamma}$ production and suppressed IL-2 expression. IFN-${\gamma}$ and IL-2 reciprocally regulate Th cell proliferation following TCR stimulation. Therefore, we examined the effect of T-bet on Th cell proliferation and found that T-bet deficiency significantly enhanced Th cell proliferation under non-skewing, Th1-skewing, and Th2-skewing conditions. By using IFN-${\gamma}$-null mice to eliminate the anti-proliferative effect of IFN-${\gamma}$, T-bet deficiency still enhanced Th cell proliferation under both Th1- and Th2-skewing conditions. Since the anti-proliferative activity of T-bet may be influenced by IL-2 suppression in Th cells, we examined whether T-bet modulates IL-2-independent cell proliferation in a non-T cell population. We demonstrated that T-bet expression induced by ecdysone treatment in human embryonic kidney (HEK) cells increased IFN-${\gamma}$ promoter activity in a dose dependent manner, and sustained T-bet expression considerably decreased cell proliferation in HEK cells. Although the molecular mechanisms underlying anti-proliferative activity of T-bet remain to be elucidated, T-bet may directly suppress cell proliferation in an IFN-${\gamma}$- or an IL-2-independent manner.