• 제목/요약/키워드: anti-microbial peptides

검색결과 15건 처리시간 0.023초

꿀벌 Apis mellifera에서 유래 한 특성화 되지 않은 항균성 펩티드의 동정 (Identification of Uncharacterized Anti-microbial Peptides Derived from the European Honeybee)

  • 박희근;김동원;이만영;최용수
    • 생명과학회지
    • /
    • 제30권1호
    • /
    • pp.64-69
    • /
    • 2020
  • 꿀벌(Apis mellifera)에는 많은 항균성 펩티드가 있습니다. 그러나 아직 많은 종류의 펩티드를 기능을 알려지지 않았다. 따라서, 알려지지 않은 기능성 펩티드의 특성화가 필요하다. 그래서 우리는 새로운 항균성 펩티드(AMP)를 분석 하였다. 우리는 Apis mellifera에서 total RNA를 분리하고 Illumina HiSeq 2500 차세대 시퀀싱(NGS) 기술을 사용하여 15,314 개의 펩티드 서열을 생성하여 새로운 AMP를 선발 하였다. AMP로서 기능을 가지는 AMP를 선발 하기 위해 AMP 서열의 특성 과 특징을 분석을 기초로 하여 알려지지 않은 펩티드 및 알려진 44 개의 펩티드가 확인 되었다. 그 중에서도 AMP5라는 특성화 되지 않은 펩티드를 선발 하였다. AMP5는 표피, 지방체, 독낭에서 발현된다. 항균 활성을 분석하기 위해 Gram-negative bacteria Escherichia coli KACC 10005 및 Bacillus thuringiensis KACC 10168에 대한 항균 활성을 합성한 AMP5 처리하여 시험 하였다. AMP5는 Gram-negative bacteria Escherichia coli에 대한 항균 활성을 나타냈다(MIC50 = 22.04±0.66 μM). 일벌에 Escherichia coli을 주사했을 때 AMP5는 체내에서 항균성 펩티드로 발현이 높아졌다. 이러한 결과는 Escherichia coli에 대한 항균 활성을 나타냄을 확인하였다.

Methionyl-tRNA Synthetase Regulates Lifespan in Drosophila

  • Suh, Yoon Seok;Yeom, Eunbyul;Nam, Jong-Woo;Min, Kyung-Jin;Lee, Jeongsoo;Yu, Kweon
    • Molecules and Cells
    • /
    • 제43권3호
    • /
    • pp.304-311
    • /
    • 2020
  • Methionyl-tRNA synthetase (MRS) is essential for translation. MRS mutants reduce global translation, which usually increases lifespan in various genetic models. However, we found that MRS inhibited Drosophila reduced lifespan despite of the reduced protein synthesis. Microarray analysis with MRS inhibited Drosophila revealed significant changes in inflammatory and immune response genes. Especially, the expression of anti-microbial peptides (AMPs) genes was reduced. When we measured the expression levels of AMP genes during aging, those were getting increased in the control flies but reduced in MRS inhibition flies age-dependently. Interestingly, in the germ-free condition, the maximum lifespan was increased in MRS inhibition flies compared with that of the conventional condition. These findings suggest that the lifespan of MRS inhibition flies is reduced due to the down-regulated AMPs expression in Drosophila.

Expression and Purification of a Cathelicidin-Derived Antimicrobial Peptide, CRAMP

  • Park Eu-Jin;Chae Young-Kee;Lee Jee-Young;Lee Byoung-Jae;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1429-1433
    • /
    • 2006
  • Application of recombinant protein production and particularly their isotopic enrichment has stimulated development of a range of novel multidimensional heteronuclear NMR techniques. Peptides in most cases are amenable to assignment and structure determination without the need for isotopic labeling. However, there are many cases where the availability of $^{15}N$ and/or $^{13}C$ labeled peptides is useful to study the structure of peptides with more than 30 residues and the interaction between peptides and membrane. CRAMP (Cathelicidin-Related AntiMicrobial Peptide) was identified from a cDNA clone derived from mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptides. CRAMP was successfully expressed as a GST-fused form in E. coli and purified using affinity chromatography and reverse-phase chromatography. The yield of the CRAMP was 1.5 mg/l 1. According to CD spectra, CRAMP adopted ${\alpha}$-helical conformation in membrane-mimetic environments. Isotope labeling of CRAMP is expected to make it possible to study the structure and dynamic properties of CRAMP in various membrane systems.

HBD: A new tool to enhance human skin self-defence against micro-organisms

  • Ingrid Pernet;Corinne Reymermier;Anne Guezennec;Jacqueline Viac;Branca, Jean-Eric;Joelle Guesnet;Eric Perrier
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.85-96
    • /
    • 2003
  • Normal human skin, constantly challenged by environmental micro-organisms, has an innate ability to fight invading microbes through antimicrobial peptides. These peptides, described in both plant and animal kingdoms are able to inactivate a broad spectrum of micro-organisms. Mammalian defensins constitute one of the most common antimicrobial peptide family. Among the three human beta-defensins hBD1, hBD2 and hBD3 produced in epithelia, only hBD2 and hBD3 are inducible and additionally have been described as expressed by differentiated keratinocytes at site of inflammation and infection. The aims of these studies were to define a cell culture model in which the basal production of hBD could be detected and up-regulated in order to enhance skin auto-protection against micro-organisms. A specific Polymerase Chain Reaction method have been developed for hBD2 and hBD3 mRNA detection in non-differentiated monolayer keratinocytes cell culture. We have been able to demonstrate that in vitro, hBD2 and hBD3 expression in normal human keratinocytes could be detected and enhanced by TNF-alpha and IFN-gamma, in hypercalcic culture conditions. This research opened the possibility of the development of cosmetic active compounds, able to induce the expression of skin natural antibiotic peptides responsible about microflora ecology of the skin.

  • PDF

MicroRNA-127 promotes antimicrobial ability in porcine alveolar macrophages via S1PR3/TLR signaling pathway

  • Honglei Zhou;Yujia Qian;Jing Liu
    • Journal of Veterinary Science
    • /
    • 제24권2호
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • Background: As Actinobacillus pleuropneumonniae (APP) infection causes considerable losses in the pig industry, there is a growing need to develop effective therapeutic interventions that leverage host immune defense mechanisms to combat these pathogens. Objectives: To demonstrate the role of microRNA (miR)-127 in controlling bacterial infection against APP. Moreover, to investigate a signaling pathway in macrophages that controls the production of anti-microbial peptides. Methods: Firstly, we evaluated the effect of miR-127 on APP-infected pigs by cell count/enzyme-linked immunosorbent assay (ELISA). Then the impact of miR-127 on immune cells was detected. The cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 were evaluated by ELISA. The expression of cytokines (anti-microbial peptides [AMPs]) was assessed using quantitative polymerase chain reaction. The expression level of IL-6, TNF-α and p-P65 were analyzed by western blot. The expression of p65 in the immune cells was investigated by immunofluorescence. Results: miR-127 showed a protective effect on APP-infected macrophage. Moreover, the protective effect might depend on its regulation of macrophage bactericidal activity and the generation of IL-22, IL-17 and AMPs by targeting sphingosine-1-phosphate receptor3 (SIPR3), the element involved in the Toll-like receptor (TLR) cascades. Conclusions: Together, we identify that miR-127 is a regulator of S1PR3 and then regulates TLR/nuclear factor-κB signaling in macrophages with anti-bacterial acticity, and it might be a potential target for treating inflammatory diseases caused by APP.

Role of Fermentation in Improving Nutritional Quality of Soybean Meal - A Review

  • Mukherjee, Runni;Chakraborty, Runu;Dutta, Abhishek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권11호
    • /
    • pp.1523-1529
    • /
    • 2016
  • Soybean meal (SBM), a commonly used protein source for animal feed, contains anti-nutritional factors such as trypsin inhibitor, phytate, oligosaccharides among others, which limit its utilization. Microbial fermentation using bacteria or fungi has the capability to improve nutritional value of SBM by altering the native composition. Both submerged and solid state fermentation processes can be used for this purpose. Bacterial and fungal fermentations result in degradation of various anti-nutritional factors, an increase in amount of small-sized peptides and improved content of both essential and non-essential amino acids. However, the resulting fermented products vary in levels of nutritional components as the two species used for fermentation differ in their metabolic activities. Compared to SBM, feeding non-ruminants with fermented SBM has several beneficial effects including increased average daily gain, improved growth performance, better protein digestibility, decreased immunological reactivity and undesirable morphological changes like absence of granulated pinocytotic vacuoles.

Bioactive peptides-derived from marine by-products: development, health benefits and potential application in biomedicine

  • Pratama, Idham Sumarto;Putra, Yanuariska;Pangestuti, Ratih;Kim, Se-Kwon;Siahaan, Evi Amelia
    • Fisheries and Aquatic Sciences
    • /
    • 제25권7호
    • /
    • pp.357-379
    • /
    • 2022
  • Increased fisheries products have raised by-products that are discarded due to low economic value. In addition, marine by-products are still rich in protein and nutritional value that have biological activities and give benefits to human health. Meanwhile, there is raised pressure for sustainability practices in marine industries to reduce waste and minimize the detrimental effect on the environment. Thus, valorization by-products through bioactive peptide mining are crucial. This review focus on various ways to obtain bioactive peptides from marine by-products through protein hydrolysis, for instance chemical hydrolysis (acid and based), biochemical hydrolysis (autolysis and enzymatic hydrolysis), microbial fermentation, and subcritical water hydrolysis. Nevertheless, these processes have benefits and drawbacks which need to be considered. This review also addresses various biological activities that are favorable in pharmaceutical industries, including antioxidant, antihypertensive, anticancer, anti-obesity, and other beneficial bioactivities. In addition, some potential marine resources of Indonesia for the marine biopeptide from their by-product or undesired marine commodities would be addressed as well.

Positive and negative regulation of the Drosophila immune response

  • Aggarwal, Kamna;Silverman, Neal
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.267-277
    • /
    • 2008
  • Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of anti-microbial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.

Anti-adherence of Antibacterial Peptides and Oligosaccharides and Promotion of Growth and Disease Resistance in Tilapia

  • Peng, K.S.;She, R.P.;Yang, Y.R.;Zhou, X.M.;Liu, W.;Wu, J.;Bao, H.H.;Liu, T.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권4호
    • /
    • pp.569-576
    • /
    • 2007
  • Four hundred and fifty tilapias ($6.77{\pm}0.23$ g) were assigned randomly to six groups to evaluate the feasibility of the tested antibacterial peptides (ABPs) and oligosaccharides as substitutes for antibiotics. The control group was fed with a commercial tilapia diet; other five groups were fed with the same commercial diet supplemented with konjac glucomannan (KGLM), cluster bean galactomannan (CBGAM), and three animal intestinal ABPs derived from chicken, pig and rabbit at 100 mg/kg respectively. After 21 days of feeding, growth, disease resistance, and in vivo anti-adherence were determined. Furthermore, the inhibitory effect of tested agents on adhesion of Aeromonas veronii biovar sobria (A.vbs) strain BJCP-5 to tilapia enteric epithelia in vitro was assessed by cell-ELISA system. As a result, the tested agents supplemented at 100 mg/kg show significant benefit to tilapia growth and disease resistance (p<0.05), and the benefit may be correlated with their interfering in the contact of bacteria with host mucosal surface. Although none of the tested agents did inhibit the growth of BJCP-5 in tryptic soy broth at $100{\mu}g/ml$, all of them did inhibit the adhesion of A.vbs to tilapia enteric epithelia in vivo and in vitro. In vitro mimic assays show that three ABPs at low concentrations of $25{\mu}g/ml$ and $2.5{\mu}g/ml$ have the reciprocal dose-dependent anti-adherence effect. The inhibition of ABPs may be correlated with a cation bridging and/or receptor-ligand binding, but not with hydrophobicity. The KGLM and CBGAM inhibited the adherence of BJCP-5 to tilapia enteric epithelia with dose-dependent manner in vitro, and this may be through altering bacterial hydrophobicity and interfering with receptor-ligand binding. Our results indicate that the anti-adherence of the tested ABPs and oligosaccharides may be one of the mechanisms in promoting tilapia growth and resistance to A.vbs.

The Role of Upper Airway Microbiome in the Development of Adult Asthma

  • Purevsuren Losol;Jun-Pyo Choi;Sae-Hoon Kim;Yoon-Seok Chang
    • IMMUNE NETWORK
    • /
    • 제21권3호
    • /
    • pp.19.1-19.18
    • /
    • 2021
  • Clinical and molecular phenotypes of asthma are complex. The main phenotypes of adult asthma are characterized by eosinophil and/or neutrophil cell dominant airway inflammation that represent distinct clinical features. Upper and lower airways constitute a unique system and their interaction shows functional complementarity. Although human upper airway contains various indigenous commensals and opportunistic pathogenic microbiome, imbalance of this interactions lead to pathogen overgrowth and increased inflammation and airway remodeling. Competition for epithelial cell attachment, different susceptibilities to host defense molecules and antimicrobial peptides, and the production of proinflammatory cytokine and pattern recognition receptors possibly determine the pattern of this inflammation. Exposure to environmental factors, including infection, air pollution, smoking is commonly associated with asthma comorbidity, severity, exacerbation and resistance to anti-microbial and steroid treatment, and these effects may also be modulated by host and microbial genetics. Administration of probiotic, antibiotic and corticosteroid treatment for asthma may modify the composition of resident microbiota and clinical features. This review summarizes the effect of some environmental factors on the upper respiratory microbiome, the interaction between host-microbiome, and potential impact of asthma treatment on the composition of the upper airway microbiome.