DOI QR코드

DOI QR Code

Bioactive peptides-derived from marine by-products: development, health benefits and potential application in biomedicine

  • Pratama, Idham Sumarto (Research Centre for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN)) ;
  • Putra, Yanuariska (Research Centre for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN)) ;
  • Pangestuti, Ratih (Research Centre for Food Technology and Processing, National Research and Innovation Agency (BRIN)) ;
  • Kim, Se-Kwon (Department of Marine Life Science, College of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Siahaan, Evi Amelia (Research Centre for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN))
  • Received : 2022.01.23
  • Accepted : 2022.05.31
  • Published : 2022.04.15

Abstract

Increased fisheries products have raised by-products that are discarded due to low economic value. In addition, marine by-products are still rich in protein and nutritional value that have biological activities and give benefits to human health. Meanwhile, there is raised pressure for sustainability practices in marine industries to reduce waste and minimize the detrimental effect on the environment. Thus, valorization by-products through bioactive peptide mining are crucial. This review focus on various ways to obtain bioactive peptides from marine by-products through protein hydrolysis, for instance chemical hydrolysis (acid and based), biochemical hydrolysis (autolysis and enzymatic hydrolysis), microbial fermentation, and subcritical water hydrolysis. Nevertheless, these processes have benefits and drawbacks which need to be considered. This review also addresses various biological activities that are favorable in pharmaceutical industries, including antioxidant, antihypertensive, anticancer, anti-obesity, and other beneficial bioactivities. In addition, some potential marine resources of Indonesia for the marine biopeptide from their by-product or undesired marine commodities would be addressed as well.

Keywords

Acknowledgement

This research was supported by the National Research Priority (PN) development of marine micro- and macroalgae from Indonesia (MALSAI).

References

  1. Ab Rahman WNS, Nordin MFM, Syariff AHM. Extraction of local fish waste by subcritical water. Mal J Fund Appl Sci. 2019;15:716-9.
  2. Abachi S, Bazinet L, Beaulieu L. Antihypertensive and angiotensin-I-converting enzyme (ACE)-inhibitory peptides from fish as potential cardioprotective compounds. Mar Drugs. 2019;17:613.
  3. Abdelhedi O, Nasri M. Basic and recent advances in marine antihypertensive peptides: production, structure-activity relationship and bioavailability. Trends Food Sci Technol. 2019;88:543-57. https://doi.org/10.1016/j.tifs.2019.04.002
  4. Abdollahi M, Undeland I. Physicochemical and gel-forming properties of protein isolated from salmon, cod and herring by-products using the pH-shift method. LWT-Food Sci Technol. 2019;101:678-84. https://doi.org/10.1016/j.lwt.2018.11.087
  5. Abhari K, Khaneghah AM. Alternative extraction techniques to obtain, isolate and purify proteins and bioactive from aquaculture and by-products. Adv Food Nutr Res. 2020;92:35-52. https://doi.org/10.1016/bs.afnr.2019.12.004
  6. Affane F, Louala S, El Imane Harrat N, Bensalah F, Chekkal H, Allaoui A, et al. Hypolipidemic, antioxidant and antiatherogenic property of sardine by-products proteins in highfat diet induced obese rats. Life Sci. 2018;199:16-22. https://doi.org/10.1016/j.lfs.2018.03.001
  7. Ahmed R, Chun BS. Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. J Supercrit Fluids. 2018;141:88-96. https://doi.org/10.1016/j.supflu.2018.03.006
  8. Al Khawli F, Marti-Quijal FJ, Ferrer E, Ruiz MJ, Berrada H, Gavahian M, et al. Aquaculture and its by-products as a source of nutrients and bioactive compounds. Adv Food Nutr Res. 2020;92:1-33. https://doi.org/10.1016/bs.afnr.2020.01.001
  9. Aleman A, Gomez-Guillen MC, Montero P. Identification of ace-inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestion. Food Res Int. 2013;54:790-5. https://doi.org/10.1016/j.foodres.2013.08.027
  10. Alvarez C, Lelu P, Lynch SA, Tiwari BK. Optimised protein recovery from mackerel whole fish by using sequential acid/alkaline isoelectric solubilization precipitation (ISP) extraction assisted by ultrasound. LWT-Food Sci Technol. 2018;88:210-16. https://doi.org/10.1016/j.lwt.2017.09.045
  11. Asaad I, Lundquist CJ, Erdmann MV, Costello MJ. Delineating priority areas for marine biodiversity conservation in the Coral Triangle. Biol Conserv. 2018;222:198-211. https://doi.org/10.1016/j.biocon.2018.03.037
  12. Ashraf SA, Adnan M, Patel M, Siddiqui AJ, Sachidanandan M, Snoussi M, et al. Fish-based bioactives as potent nutraceuticals: exploring the therapeutic perspective of sustainable food from the sea. Mar Drugs. 2020;18:265.
  13. Atef M, Mahdi Ojagh S. Health benefits and food applications of bioactive compounds from fish byproducts: a review. J Funct Foods. 2017;35:673-81. https://doi.org/10.1016/j.jff.2017.06.034
  14. Azaza YB, Hamdi M, Charmette C, Jridi M, Li S, Nasri M, et al. Development and characterization of active packaging films based on chitosan and sardinella protein isolate: effects on the quality and the shelf life of shrimps. Food Packag Shelf Life. 2022;31:100796.
  15. Beaulieu L, Thibodeau J, Bonnet C, Bryl P, Carbonneau ME. Evidence of anti-proliferative activities in blue mussel (Mytilus edulis) by-products. Mar Drugs. 2013;11:975-90. https://doi.org/10.3390/md11040975
  16. Ben Slimane E, Sadok S. Collagen from cartilaginous fish by-products for a potential application in bioactive film composite. Mar Drugs. 2018;16:211.
  17. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288-98. https://doi.org/10.1038/s41574-019-0176-8
  18. Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D, et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem. 2010;118:559-65. https://doi.org/10.1016/j.foodchem.2009.05.021
  19. Bui XD, Vo CT, Bui VC, Pham TM, Bui TTH, Nguyen-Sy T, et al. Optimization of production parameters of fish protein hydrolysate from Sarda Orientalis black muscle (by-product) using protease enzyme. Clean Technol Environ Policy. 2021;23:31-40. https://doi.org/10.1007/s10098-020-01867-2
  20. Caleja C, Barros L, Antonio AL, Oliveira MBPP, Ferreira ICFR. A comparative study between natural and synthetic antioxidants: evaluation of their performance after incorporation into biscuits. Food Chem. 2017;216:342-6. https://doi.org/10.1016/j.foodchem.2016.08.075
  21. Camargo TR, Ramos P, Monserrat JM, Prentice C, Fernandes CJC, Zambuzzi WF, et al. Biological activities of the protein hydrolysate obtained from two fishes common in the fisheries bycatch. Food Chem. 2021;342:128361.
  22. Carmona-Maurici J, Cuello E, Ricart-Jane D, Minarro A, Kissler JJO, Baena-Fustegueras JA, et al. Effect of bariatric surgery in the evolution of oxidative stress depending on the presence of atheroma in patients with morbid obesity. Surg Obes Relat Dis. 2020;16:1258-65. https://doi.org/10.1016/j.soard.2020.04.040
  23. Chakrabarti S, Guha S, Majumder K. Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients. 2018;10:1738.
  24. Chasanah E. Marine biodiscovery research in Indonesia: challenges and rewards. J Coast Zone Manag. 2008;12:1-12.
  25. Chen J, Jiang Y, Shi H, Peng Y, Fan X, Li C, et al. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Archiv Eur J Physiol. 2020a;472:1415-29. https://doi.org/10.1007/s00424-020-02412-2
  26. Chen M, Zhang Y, Zhang W, Li J. Polyhedral oligomeric silsesquioxane-incorporated gelatin hydrogel promotes angiogenesis during vascularized bone regeneration. ACS Appl Mater Interfaces. 2020b;12:22410-25. https://doi.org/10.1021/acsami.0c00714
  27. Choi JS, Jang DB, Moon HE, Roh MK, Kim YD, Cho KK, et al. Physiological properties of Engraulis japonicus muscle protein hydrolysates prepared by subcritical water hydrolysis. J Environ Biol. 2017;38:283-9. https://doi.org/10.22438/jeb/38/2/MRN-973
  28. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6-10. https://doi.org/10.1016/j.metabol.2018.09.005
  29. Choy BC, Cater RJ, Mancia F, Pryor EE Jr. A 10-year meta-analysis of membrane protein structural biology: detergents, membrane mimetics, and structure determination techniques. Biochim Biophys Acta Biomembr. 2021;1863:183533.
  30. Coppola D, Lauritano C, Palma Esposito F, Riccio G, Rizzo C, de Pascale D. Fish waste: from problem to valuable resource. Mar Drugs. 2021;19:116.
  31. Cortassa S, Juhaszova M, Aon MA, Zorov DB, Sollott SJ. Mito-chondrial Ca2+, redox environment and ROS emission in heart failure: two sides of the same coin? J Mol Cell Cardiol. 2021;151:113-25. https://doi.org/10.1016/j.yjmcc.2020.11.013
  32. Costello MJ, Chaudhary C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr Biol. 2017;27:R511-27. https://doi.org/10.1016/j.cub.2017.04.060
  33. da Cruz RG, Beney L, Gervais P, de Lira SP, de Souza Vieira TMF, Dupont S, et al. Comparison of the antioxidant property of acerola extracts with synthetic antioxidants using an in vivo method with yeasts. Food Chem. 2019;277:698-705. https://doi.org/10.1016/j.foodchem.2018.10.099
  34. da Silva CP, Bezerra RS, dos Santos ACO, Messias JB, de Castro CROB, Junior LBC, et al. Biological value of shrimp protein hydrolysate by-product produced by autolysis. LWT-Food Sci Technol. 2017;80:456-61. https://doi.org/10.1016/j.lwt.2017.03.008
  35. Daroit DJ, Brandelli A. In vivo bioactivities of food protein-derived peptides: a current review. Curr Opin Food Sci. 2021;39:120-9. https://doi.org/10.1016/j.cofs.2021.01.002
  36. Dave D, Liu Y, Clark L, Dave N, Trenholm S, Westcott J, et al. Availability of marine collagen from Newfoundland fisheries and aquaculture waste resources. Bioresour Technol Rep. 2019;7:100271.
  37. de Jesus JHF, Ferreira APG, Szilagyi IM, Cavalheiro ETG. Thermal behavior and polymorphism of the antioxidants: BHA, BHT and TBHQ. Fuel. 2020;278:118298.
  38. de Silva MPKSK, Senaarachchi WARK. Efficiency of biotransformation of shellfish waste to carotenoprotein by autolysis and crab-shrimp endo-enzymes. J Aquat Food Prod Technol. 2021;30:526-34. https://doi.org/10.1080/10498850.2021.1900967
  39. Devita L, Nurilmala M, Lioe HN, Suhartono MT. Chemical and antioxidant characteristics of skin-derived collagen obtained by acid-enzymatic hydrolysis of bigeye tuna (Thunnus obesus). Mar Drugs. 2021;19:222.
  40. Djellouli M, Lopez-Caballero ME, Arancibia MY, Karam N, Martinez-Alvarez O. Antioxidant and antimicrobial enhancement by reaction of protein hydrolysates derived from shrimp by-products with glucosamine. Waste Biomass Valor. 2020;11:2491-505. https://doi.org/10.1007/s12649-019-00607-y
  41. Fadilah N, Dewi EN, Romadhon R, Purnamayati L. Characteristic of blue swim crab mustard (Portunus pelagicus) protein hydrolysate with different papain enzyme concentrations. Saintek Perikanan Indones J Fish Sci Technol. 2020;17.
  42. Fawzya YN, Irianto HE. Fish protein hydrolysates in Indonesia: their nutritional values, health benefits, and potential applications. In: Nathani NM, Mootapally C, Gadhvi IR, Maitreya B, Joshi CG, editors. Marine niche: applications in pharmaceutical sciences. Singapore: Springer Singapore; 2020. p. 283-97.
  43. Feki A, Sellem I, Hamzaoui A, Amar WB, Mellouli L, Zariat A, et al. Effect of the incorporation of polysaccharide from Falkenbergia rufolanosa on beef sausages for quality and shelf life improvement. LWT-Food Sci Technol. 2021;143:111139.
  44. Foegeding EA, Plundrich N, Schneider M, Campbell C, Lila MA. Protein-polyphenol particles for delivering structural and health functionality. Food Hydrocoll. 2017;72:163-73. https://doi.org/10.1016/j.foodhyd.2017.05.024
  45. Food and Agriculture Organization of the United Nations [FAO]. The state of world fisheries and aquaculture 2020: sustainability in action. Rome: FAO; 2020.
  46. Galico DA, Nova CV, Guerra RB, Bannach G. Thermal and spectroscopic studies of the antioxidant food additive propyl gallate. Food Chem. 2015;182:89-94. https://doi.org/10.1016/j.foodchem.2015.02.129
  47. Gao J, Zhang G, Xu K, Ma D, Ren L, Fan J, et al. Bone marrow mesenchymal stem cells improve bone erosion in collagen-induced arthritis by inhibiting osteoclasia-related factors and differentiating into chondrocytes. Stem Cell Res Ther. 2020;11:171.
  48. Gham M, Um M, Kye S. Evaluation of dietary quality and nutritional status based on nutrition quotient and health functional food intake in the Korea elderly. J Korean Soc Food Cult. 2019;34:474-85.
  49. Ghorbel-Bellaaj O, Maalej H, Nasri M, Jellouli K. Fermented shrimp waste hydrolysates: promising source of functional molecules with antioxidant properties. J Culin Sci Technol. 2018;16:357-77. https://doi.org/10.1080/15428052.2017.1394950
  50. Guo N, Sun J, Zhang Z, Mao X. Recovery of chitin and protein from shrimp head waste by endogenous enzyme autolysis and fermentation. J Ocean Univ China. 2019;18:719-26. https://doi.org/10.1007/s11802-019-3867-9
  51. Hajeb P, Jinap S. Fermented shrimp products as source of umami in Southeast Asia. J Nutr Food Sci. 2012;S10:006.
  52. Hajfathalian M, Ghelichi S, Garcia-Moreno PJ, Moltke Sorensen AD, Jacobsen C. Peptides: production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr. 2018;58:3097-129. https://doi.org/10.1080/10408398.2017.1352564
  53. Han Y, Jia B, Lian M, Sun B, Wu Q, Sun B, et al. High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury. Bioact Mater. 2021;6:2173-86. https://doi.org/10.1016/j.bioactmat.2020.12.018
  54. Hao G, Cao W, Li T, Chen J, Zhang J, Weng W, et al. Effect of temperature on chemical properties and antioxidant activities of abalone viscera subcritical water extract. J Supercrit Fluids. 2019;147:17-23. https://doi.org/10.1016/j.supflu.2019.02.007
  55. Hayes M, Flower DJ. Bioactive peptides from marine processing byproducts. Bioact Compd Mar Foods Plant Anim Sources. 2013:57-71.
  56. He D, Wu S, Yan L, Zuo J, Cheng Y, Wang H, et al. Antitumor bioactivity of porphyran extracted from Pyropia yezoensis Chonsoo2 on human cancer cell lines. J Sci Food Agric. 2019;99:6722-30. https://doi.org/10.1002/jsfa.9954
  57. He Y, Yang Q, Liu H, Jiang L, Liu Q, Lian W, et al. Effect of blood pressure on early neurological deterioration of acute ischemic stroke patients with intravenous rt-PA thrombolysis may be mediated through oxidative stress induced blood-brain barrier disruption and AQP4 upregulation. J Stroke Cerebrovasc Dis. 2020;29:104997.
  58. Heo SY, Ko SC, Nam SY, Oh J, Kim YM, Kim JI, et al. Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Cell Biochem Funct. 2018;36:137-46. https://doi.org/10.1002/cbf.3325
  59. Hernandez-Zazueta MS, Luzardo-Ocampo I, Garcia-Romo JS, Noguera-Artiaga L, Carbonell-Barrachina AA, Taboada-Antelo P, et al. Bioactive compounds from Octopus vulgaris ink extracts exerted anti-proliferative and anti-inflammatory effects in vitro. Food Chem Toxicol. 2021;151:112119.
  60. Hsu KC. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem. 2010;122:42-8. https://doi.org/10.1016/j.foodchem.2010.02.013
  61. Hutomo M, Moosa MK. Indonesian marine and coastal biodiversity: present status. Indian J Mar Sci. 2005;34:88-97.
  62. Irianto HE, Dewi AS, Giyatmi. Prospective utilization of fishery by-products in Indonesia. In: Kim SK, editor. Seafood processing by-products. New York, NY: Springer; 2014. p. 21-34.
  63. Jackson A, Newton RW. Project to model the use of fisheries by-products in the production of marine ingredients with special reference to omega-3 fatty acids EPA and DHA [Internet]. Institute of Aquaculture, University of Stirling and Marine Ingredients Organisation. 2016 [cited 2021 Apr 2]. https://www.iffo.com/system/files/downloads/Report%IoA%IFFO%project%Final_0.pdf
  64. Jang HJ, Kim Y, Yoo BY, Seo YK. Wound-healing effects of human dermal components with gelatin dressing. J Biomater Appl. 2018;32:716-24. https://doi.org/10.1177/0885328217741758
  65. Jaziri AA, Setijawati D, Yufidasari HS, Pratomo MD, Wardani DW, Ersyah D, et al. Characteristics of peptones from grouper (Epinephelus fuscoguttatus) and parrotfish (Scarus javanicus) head by-products as bacterial culture media. J Biotech Res. 2020;11:1-12.
  66. Jiang W, Liu Y, Yang X, Wang P, Hu S, Li J, et al. Recovery of proteins from squid by-products with enzymatic hydrolysis and increasing the hydrolysate's bioactivity by Maillard reaction. J Aquat Food Prod Technol. 2018;27:900-11. https://doi.org/10.1080/10498850.2018.1508104
  67. Jo C, Khan FF, Khan MI, Iqbal J. Marine bioactive peptides: types, structures, and physiological functions. Food Rev Int. 2017;33:44-61. https://doi.org/10.1080/87559129.2015.1137311
  68. Joshi I, Janagaraj K, Noorani KPM, Nazeer RA. Isolation and characterization of angiotensin I-converting enzyme (ACE-I) inhibition and antioxidant peptide from by-catch shrimp (Oratosquilla woodmasoni) waste. Biocatal Agric Biotechnol. 2020;29:101770.
  69. Kang HK, Lee HH, Seo CH, Park Y. Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar Drugs. 2019a;17:350.
  70. Kang MG, Lee MY, Cha JM, Lee JK, Lee SC, Kim J, et al. Nanogels derived from fish gelatin: application to drug delivery system. Mar Drugs. 2019b;17:246.
  71. Kang NJ, Jin HS, Lee SE, Kim HJ, Koh H, Lee DW, et al. New approaches towards the discovery and evaluation of bioactive peptides from natural resources. Crit Rev Environ Sci Technol. 2020;50:72-103. https://doi.org/10.1080/10643389.2019.1619376
  72. Karami Z, Akbari-Adergani B. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. J Food Sci Technol. 2019;56:535-47. https://doi.org/10.1007/s13197-018-3549-4
  73. Karimi N, Nikoo M, Ahmadi Gavlighi H, Piri Gheshlaghi S, Regenstein JM, Xu X, et al. Effect of pacific white shrimp (Litopenaeus vannamei) protein hydrolysates (SPH) and (-)-epigallocatechin gallate (EGCG) on sourdough and bread quality. LWT-Food Sci Technol. 2020;131:109800.
  74. Karthik R, Manigandan V, Ebenezar KK, Vijayashree R, Saravanan R. In vitro and in vivo anticancer activity of posterior salivary gland toxin from the cuttlefish Sepia pharaonis, Ehrenberg (1831). Chem Biol Interact. 2017;272:10-20. https://doi.org/10.1016/j.cbi.2017.04.002
  75. Kliche T, Li B, Bockelmann W, Habermann D, Klempt M, de Vrese M, et al. Screening for proteolytically active lactic acid bacteria and bioactivity of peptide hydrolysates obtained with selected strains. Appl Microbiol Biotechnol. 2017;101:7621-33. https://doi.org/10.1007/s00253-017-8369-3
  76. Knopf-Marques H, Barthes J, Lachaal S, Mutschler A, Muller C, Dufour F, et al. Multifunctional polymeric implant coatings based on gelatin, hyaluronic acid derivative and chain length-controlled poly (arginine). Mater Sci Eng C. 2019;104:109898.
  77. Kongkaoroptham P, Piroonpan T, Pasanphan W. Chitosan nanoparticles based on their derivatives as antioxidant and antibacterial additives for active bioplastic packaging. Carbohydr Polym. 2021;257:117610.
  78. Kook YM, Kim H, Kim S, Heo CY, Park MH, Lee K, et al. Promotion of vascular morphogenesis of endothelial cells co-cultured with human adipose-derived mesenchymal stem cells using polycaprolactone/gelatin nanofibrous scaffolds. Nanomaterials. 2018;8:117.
  79. Kumar D. Cancer cell metabolism: a potential target for cancer therapy. Singapore: Springer Singapore; 2020.
  80. Kumari R, Dhankhar P, Dalal V. Structure-based mimicking of hydroxylated biphenyl congeners (OHPCBs) for human transthyretin, an important enzyme of thyroid hormone system. J Mol Graph Model. 2021;105:107870.
  81. Kusumaningtyas E, Nurilmala M, Sibarani D. Antioxidant and antifungal activities of collagen hydrolysates from skin of milkfish (Chanos chanos) hydrolyzed using various bacillus proteases. IOP Conf Ser Earth Environ Sci. 2019;278:012040.
  82. Lapena D, Vuoristo KS, Kosa G, Horn SJ, Eijsink VGH. Comparative assessment of enzymatic hydrolysis for valorization of different protein-rich industrial byproducts. J Agric Food Chem. 2018;66:9738-49. https://doi.org/10.1021/acs.jafc.8b02444
  83. Lee EJ, Hur J, Ham SA, Jo Y, Lee SY, Choi MJ, et al. Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice. Int J Biol Macromol. 2017;104:281-6. https://doi.org/10.1016/j.ijbiomac.2017.05.151
  84. Lee HJ, Roy VC, Ho TC, Park JS, Jeong YR, Lee SC, et al. Amino acid profiles and biopotentiality of hydrolysates obtained from comb penshell (Atrina pectinata) viscera using subcritical water hydrolysis. Mar Drugs. 2021;19:137.
  85. Lee JK, Jeon JK, Byun HG. Effect of angiotensin I converting enzyme inhibitory peptide purified from skate skin hydrolysate. Food Chem. 2011;125:495-9. https://doi.org/10.1016/j.foodchem.2010.09.039
  86. Li W, Kobayashi T, Meng DW, Miyamoto N, Tsutsumi N, Ura K, et al. Free radical scavenging activity of type II collagen peptides and chondroitin sulfate oligosaccharides from by-products of mottled skate processing. Food Biosci. 2021;41:100991.
  87. Lian D, Yuan H, Yin X, Wu Y, He R, Huang Y, et al. Puerarin inhibits hyperglycemia-induced inter-endothelial junction through suppressing endothelial Nlrp3 inflammasome activation via ROS-dependent oxidative pathway. Phytomedicine. 2019;55:310-9. https://doi.org/10.1016/j.phymed.2018.10.013
  88. Lima DAS, Santos MMF, Duvale RLF, Bezerra TKA, Araujo IBS, Madruga MS, et al. Technological properties of protein hydrolysate from the cutting byproduct of serra spanish mackerel (Scomberomorus brasiliensis). J Food Sci Technol. 2021;58:2952-62. https://doi.org/10.1007/s13197-020-04797-5
  89. Lima KO, da Costa de Quadros C, da Rocha M, Jocelino Gomes de Lacerda JT, Juliano MA, Dias M, et al. Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of stripped weakfish (Cynoscion guatucupa). LWT-Food Sci Technol. 2019;111:408-13. https://doi.org/10.1016/j.lwt.2019.05.043
  90. Lin L, Lv S, Li B. Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chem. 2012;131:225-30. https://doi.org/10.1016/j.foodchem.2011.08.064
  91. Link W. Principles of cancer treatment and anticancer drug development. Cham: Springer; 2019.
  92. Liu C, Wang J, Gao C, Wang Z, Zhou X, Tang M, et al. Enhanced osteoinductivity and corrosion resistance of dopamine/gelatin/rhBMP-2-coated β-TCP/Mg-Zn orthopedic implants: an in vitro and in vivo study. PLOS ONE. 2020;15:e0228247.
  93. Lu H, Hu H, Yang Y, Li S. The inhibition of reactive oxygen species (ROS) by antioxidants inhibits the release of an autophagy marker in ectopic endometrial cells. Taiwan J Obstet Gynecol. 2020;59:256-61. https://doi.org/10.1016/j.tjog.2020.01.014
  94. Lu WY, Li HJ, Li QY, Wu YC. Application of marine natural products in drug research. Bioorg Med Chem. 2021;35:116058.
  95. Luan X, Yan Y, Zheng Q, Wang M, Chen W, Yu J, et al. Excessive reactive oxygen species induce apoptosis via the APPL1-Nrf2/HO-1 antioxidant signalling pathway in trophoblasts with missed abortion. Life Sci. 2020;254:117781. https://doi.org/10.1016/j.lfs.2019.116816
  96. Luo J, le Cessie S, van Heemst D, Noordam R. Diet-derived circulating antioxidants and risk of coronary heart disease: a Mendelian randomization study. J Am Coll Cardiol. 2021;77:45-54. https://doi.org/10.1016/j.jacc.2020.10.048
  97. Maeda H, Hosomi R, Fukuda M, Ikeda Y, Yoshida M, Fukunaga K, et al. Dietary tuna dark muscle protein attenuates hepatic steatosis and increases serum high-density lipoprotein cholesterol in obese type-2 diabetic/obese KK-Ay mice. J Food Sci. 2017;82:1231-8. https://doi.org/10.1111/1750-3841.13711
  98. Mancini S, Preziuso G, Dal Bosco A, Roscini V, Parisi G, Paci G, et al. Modifications of fatty acids profile, lipid peroxidation and antioxidant capacity in raw and cooked rabbit burgers added with ginger. Meat Sci. 2017;133:151-8. https://doi.org/10.1016/j.meatsci.2017.07.003
  99. Marti-Quijal FJ, Remize F, Meca G, Ferrer E, Ruiz MJ, Barba FJ, et al. Fermentation in fish and by-products processing: an overview of current research and future prospects. Curr Opin Food Sci. 2020a;31:9-16. https://doi.org/10.1016/j.cofs.2019.08.001
  100. Marti-Quijal FJ, Tornos A, Princep A, Luz C, Meca G, Tedeschi P, et al. Impact of fermentation on the recovery of antioxidant bioactive compounds from sea bass byproducts. Antioxidants. 2020b;9:239.
  101. Mechri S, Sellem I, Bouacem K, Jabeur F, Laribi-Habchi H, Mellouli L, et al. A biological clean processing approach for the valorization of speckled shrimp Metapenaeus monoceros by-product as a source of bioactive compounds. Environ Sci Pollut Res Int. 2020;27:15842-55. https://doi.org/10.1007/s11356-020-08076-w
  102. Melgosa R, Trigueros E, Sanz MT, Cardeira M, Rodrigues L, Fernandez N, et al. Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. J Supercrit Fluids. 2020;164:104943.
  103. Michurina S, Stafeev I, Podkuychenko N, Sklyanik I, Shestakova E, Yah'yaev K, et al. Decreased UCP-1 expression in beige adipocytes from adipose-derived stem cells of type 2 diabetes patients associates with mitochondrial ROS accumulation during obesity. Diabetes Res Clin Pract. 2020;169:108410.
  104. Miller ME. Cancer. New York, NY: Momentum Press; 2018.
  105. Ministry of Marine Affairs and Fisheries. Marine and fishery production [Internet]. 2017 [cited 2022 Apr 6]. https://statistik.kkp.go.id/home.php?m=prod_ikan_prov&i=2#panel-footer
  106. Mirzapour-Kouhdasht A, Moosavi-Nasab M, Krishnaswamy K, Khalesi M. Optimization of gelatin production from barred mackerel by-products: characterization and hydrolysis using native and commercial proteases. Food Hydrocoll. 2020;108:105970.
  107. Mongkonkamthorn N, Malila Y, Yarnpakdee S, Makkhun S, Regenstein JM, Wangtueai S. Production of protein hydrolysate containing antioxidant and angiotensin-I-converting enzyme (ACE) inhibitory activities from tuna (Katsuwonus pelamis) blood. Processes. 2020;8:1518.
  108. Mora Roman JJ, Del Campo M, Villar J, Paolini F, Curzio G, Venuti A, et al. Immunotherapeutic potential of mollusk hemocyanins in combination with human vaccine adjuvants in murine models of oral cancer. J Immunol Res. 2019;2019:7076942.
  109. Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: a review. Eur J Med Chem. 2019;178:687-704. https://doi.org/10.1016/j.ejmech.2019.06.010
  110. Nghia ND. Seafood by-products: a new way from waste to high added value in pharmaceuticals and cosmetics. Encyclopedia Mar Biotechnol. 2020:2961-86.
  111. Ngo DH, Ryu B, Vo TS, Himaya SWA, Wijesekara I, Kim SK, et al. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int J Biol Macromol. 2011;49:1110-6. https://doi.org/10.1016/j.ijbiomac.2011.09.009
  112. Nigam M, Suleria HAR, Farzaei MH, Mishra AP. Marine anticancer drugs and their relevant targets: a treasure from the ocean. DARU J Pharma Sci. 2019;27:491-515. https://doi.org/10.1007/s40199-019-00273-4
  113. Nikoo M, Benjakul S, Gavlighi HA, Xu X, Regenstein JM. Hydrolysates from rainbow trout (Oncorhynchus mykiss) processing by-products: properties when added to fish mince with different freeze-thaw cycles. Food Biosci. 2019;30:100418.
  114. Nikoo M, Regenstein JM, Noori F, Gheshlaghi SP. Autolysis of rainbow trout (Oncorhynchus mykiss) by-products: enzymatic activities, lipid and protein oxidation, and antioxidant activity of protein hydrolysates. LWT-Food Sci Techno. 2021a;140:110702.
  115. Nikoo M, Xu X, Regenstein JM, Noori F. Autolysis of Pacific white shrimp (Litopenaeus vannamei) processing by-products: enzymatic activities, lipid and protein oxidation, and antioxidant activity of hydrolysates. Food Biosci. 2021b;39:100844.
  116. Nisov A, Kakko T, Alakomi HL, Lantto R, Honkapaa K. Comparison of enzymatic and pH shift methods to extract protein from whole Baltic herring (Clupea harengus membras) and roach (Rutilus rutilus). Food Chem. 2022;373:131524.
  117. Nugroho G, Ekawati AW, Kartikaningsih H. Characteristics of tuna viscera (Thunnus sp.) hydrolysate protein fermented by Bacillus licheniformis. Res J Life Sci. 2020;7:101-7. https://doi.org/10.21776/ub.rjls.2020.007.02.4
  118. Nurdiani R, Ramadhan M, Prihanto AA, Firdaus M. Characteristics of fish protein hydrolysate from mackerel (Scomber japonicus) by-products. J Hunan Univ Nat Sci. 2022;49.
  119. Nurdiani R, Vasiljevic T, Yeager T, Singh TK, Donkor ON. Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from flathead (Platycephalus fuscus) by-products. Eur Food Res Technol. 2017;243:627-37. https://doi.org/10.1007/s00217-016-2776-z
  120. Nurilmala M, Hizbullah HH, Karnia E, Kusumaningtyas E, Ochiai Y. Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin tuna (Thunnus albacares) skin. Mar Drugs. 2020;18:98.
  121. Nurilmala M, Pertiwi RM, Nurhayati T, Fauzi S, Batubara I, Ochiai Y. Characterization of collagen and its hydrolysate from yellowfin tuna Thunnus albacares skin and their potencies as antioxidant and antiglycation agents. Fish Sci. 2019;85:591-9. https://doi.org/10.1007/s12562-019-01303-5
  122. Pal S, Rao GN, Pal A. High glucose-induced ROS accumulation is a critical regulator of ERK1/2-Akt-tuberin-mTOR signalling in RGC-5 cells. Life Sci. 2020;256:117914.
  123. Pangestuti R, Kim SK. Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar Drugs. 2017;15:67.
  124. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V, et al. Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med. 2017;6:2115-25. https://doi.org/10.1002/sctm.17-0138
  125. Patra S, Praharaj PP, Panigrahi DP, Panda B, Bhol CS, Mahapatra KK, et al. Bioactive compounds from marine invertebrates as potent anticancer drugs: the possible pharmacophores modulating cell death pathways. Mol Biol Rep. 2020;47:7209-28. https://doi.org/10.1007/s11033-020-05709-8
  126. Pena-Bautista C, Lopez-Cuevas R, Cuevas A, Baquero M, Chafer-Pericas C. Lipid peroxidation biomarkers correlation with medial temporal atrophy in early Alzheimer Disease. Neurochem Int. 2019;129:104519.
  127. Petrova I, Tolstorebrov I, Eikevik TM. Production of fish protein hydrolysates step by step: technological aspects, equipment used, major energy costs and methods of their minimizing. Int Aquat Res. 2018;10:223-41. https://doi.org/10.1007/s40071-018-0207-4
  128. Pezeshk S, Ojagh SM, Rezaei M, Shabanpour B. Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: investigation of antibacterial and antioxidant activities. Probiotics Antimicrob Proteins. 2019;11:1015-22. https://doi.org/10.1007/s12602-018-9483-y
  129. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants: an overview on their chemistry and influences on health status. Eur J Med Chem. 2021;209:112891.
  130. Priatni S, Ratnaningrum D, Kosasih W, Sriendah E, Srikandace Y, Rosmalina T, et al. Protein and fatty acid profile of marine fishes from Java Sea, Indonesia. Biodivers J Biol Divers. 2018;19:1737-42. https://doi.org/10.13057/biodiv/d190520
  131. Prihanto AA, Nurdiani R, Bagus AD. Production and characteristics of fish protein hydrolysate from parrotfish (Chlorurus sordidus) head. PeerJ. 2019;7:e8297.
  132. Pujiastuti DY, Ghoyatul Amin MN, Alamsjah MA, Hsu JL. Marine organisms as potential sources of bioactive peptides that inhibit the activity of angiotensin I-converting enzyme: a review. Molecules. 2019;24:2541.
  133. Putra MY, Murniasih T. Distribution and diversity of marine natural products from Indonesian marine organisms. J Coast Life Med. 2016;4:104-7. https://doi.org/10.12980/jclm.4.2016j5-236
  134. Qian ZJ, Zhang YY, Oh GW, Heo SY, Park WS, Choi IW, et al. Antioxidant and angiotensin I converting enzyme inhibition effects and antihypertensive effect in spontaneously hyertensive rats of peptide isolated from boiled abalone by-products, Hallotis discus hannai. J Aquat Food Prod Technol. 2018;27:946-60. https://doi.org/10.1080/10498850.2018.1518361
  135. Radhika Rajasree SR, Gobalakrishnan M, Aranganathan L, Karthih MG. Fabrication and characterization of chitosan based collagen/gelatin composite scaffolds from big eye snapper Priacanthus hamrur skin for antimicrobial and anti oxidant applications. Mater Sci Eng C. 2020;107:110270.
  136. Rahman MS, Rahman MS. Effects of elevated temperature on prooxidant-antioxidant homeostasis and redox status in the American oyster: signaling pathways of cellular apoptosis during heat stress. Environ Res. 2021;196:110428.
  137. Raja K, Martin LC, Bose L, Sahayanathan GJ, Padmanaban D, Chinnasamy A. Anti-proliferative and apoptotic effects of by-product (skin extract) from marine catfish Tachysurus dussumieri. Biocatal Agric Biotechnol. 2020;29:101816.
  138. Rajendran SRCK, Mohan A, Khiari Z, Udenigwe CC, Mason B. Yield, physicochemical, and antioxidant properties of Atlantic salmon visceral hydrolysate: comparison of lactic acid bacterial fermentation with flavourzyme proteolysis and formic acid treatment. J Food Process Preserv. 2018;42:e13620.
  139. Saidi S, Saoudi M, Ben Amar R. Valorisation of tuna processing waste biomass: isolation, purification and characterisation of four novel antioxidant peptides from tuna by-product hydrolysate. Environ Sci Pollut Res Int. 2018;25:17383-92. https://doi.org/10.1007/s11356-018-1809-5
  140. Salmanzadeh R, Eskandani M, Mokhtarzadeh A, Vandghanooni S, Ilghami R, Maleki H, et al. Propyl gallate (PG) and tert-butylhydroquinone (TBHQ) may alter the potential anti-cancer behavior of probiotics. Food Biosci. 2018;24:37-45. https://doi.org/10.1016/j.fbio.2018.05.005
  141. Sasaki C, Tamura S, Tohse R, Fujita S, Kikuchi M, Asada C, et al. Isolation and identification of an angiotensin I-converting enzyme inhibitory peptide from pearl oyster (Pinctada fucata) shell protein hydrolysate. Process Biochem. 2019;77:137-42. https://doi.org/10.1016/j.procbio.2018.11.017
  142. Sellimi S, Ksouda G, Benslima A, Nasri R, Rinaudo M, Nasri M, et al. Enhancing colour and oxidative stabilities of reduced-nitrite turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed Cystoseira barbata. Food Chem Toxicol. 2017;107:620-9. https://doi.org/10.1016/j.fct.2017.04.001
  143. Setijawati D, Jaziri AA, Yufidasari HS, Pratomo MD, Wardani DW, Ersyah D, et al. Effect of incubation time and pH on the protein characterization of the aqueous soluble phase of acidified mackerel by-product. IOP Conf Ser: Earth Environ Sci. 2020;493:012030.
  144. Setijawati D, Jaziri AA, Yufidasari HS, Wardani DW, Pratomo MD, Ersyah D, et al. Characteristics of peptone from the mackerel, Scomber japonicus head by-product as bacterial growth media. Biosci Biotechnol Res Commun. 2019;12:829-36. https://doi.org/10.21786/bbrc/12.4/1
  145. Sghayyar HNM, Lim SS, Ahmed I, Lai JY, Cheong XY, Chong ZW, et al. Fish biowaste gelatin coated phosphate-glass fibres for wound-healing application. Eur Polym J. 2020;122:109386.
  146. Shavandi A, Hu Z, Teh SS, Zhao J, Carne A, Bekhit A, et al. Antioxidant and functional properties of protein hydrolysates obtained from squid pen chitosan extraction effluent. Food Chem. 2017;227:194-201. https://doi.org/10.1016/j.foodchem.2017.01.099
  147. Shen K, Mu W, Xia S, Chen Y, Ren H, Xie X, et al. Preparation of protein powder from the liver of yellowfin tuna (Thunnus albacores): a comparison of acid- and alkali-aided pH-shifting. Food Sci Technol. 2021;42.
  148. Shrivastava A, Mishra SP, Pradhan S, Choudhary S, Singla S, Zahra K, et al. An assessment of serum oxidative stress and antioxidant parameters in patients undergoing treatment for cervical cancer. Free Radic Biol Med. 2021;167:29-35. https://doi.org/10.1016/j.freeradbiomed.2021.02.037
  149. Siahaan EA, Chun BS. Innovative alternative technology for fucoxanthin recovery. Encyclopedia Mar Biotechnol. 2020:3213-27.
  150. Siddeeg A, AlKehayez NM, Abu-Hiamed HA, Al-Sanea EA, Al-Farga AM. Mode of action and determination of antioxidant activity in the dietary sources: an overview. Saudi J Biol Sci. 2021;28:1633-44. https://doi.org/10.1016/j.sjbs.2020.11.064
  151. Song R, Zhang K, Wei R. In vitro antioxidative activities of squid (Ommastrephes bartrami) viscera autolysates and identification of active peptides. Process Biochem. 2016;51:1674-82. https://doi.org/10.1016/j.procbio.2016.06.015
  152. Song Y, Nagai N, Saijo S, Kaji H, Nishizawa M, Abe T. In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery. Mater Sci Eng C. 2018;88:1-12. https://doi.org/10.1016/j.msec.2018.02.022
  153. Stevens JR, Newton RW, Tlusty M, Little DC. The rise of aquaculture by-products: increasing food production, value, and sustainability through strategic utilisation. Mar Policy. 2018;90:115-24. https://doi.org/10.1016/j.marpol.2017.12.027
  154. Surasani VKR. Acid and alkaline solubilization (pH shift) process: a better approach for the utilization of fish processing waste and by-products. Environ Sci Pollut Res Int. 2018;25:18345-63. https://doi.org/10.1007/s11356-018-2319-1
  155. Taira Y, Yamashita T, Bian Y, Shang J, Matsumoto N, Sasaki R, et al. Antioxidative effects of a novel dietary supplement Neumentix in a mouse stroke model. J Stroke Cerebrovasc Dis. 2020;29:104818.
  156. Te Riet L, van Esch JHM, Roks AJH, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116:960-75. https://doi.org/10.1161/CIRCRESAHA.116.303587
  157. Thenu JL, Lokollo E, Wenno MR. Chemical compositions and amino acids of dolphin fish (Coryphaena hippurus) roes. In: Proceedings of the 3rd International Seminar of Basic Sciences; 2017; Ambon, Indonesia.
  158. Trilaksani W, Adnyane IKM, Riyanto B, Safitri N. Nano collagen of the grouper swim bladder in compliance with quality standard of cosmetics materials. IOP Conf Ser: Earth Environ Sci. 2020;404:012050.
  159. Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J, et al. Functional and bioactive properties of peptides derived from marine side streams. Mar Drugs. 2021;19:71.
  160. Valencia P, Valdivia S, Nunez S, Ovissipour R, Pinto M, Ramirez C, et al. Assessing the enzymatic hydrolysis of salmon frame proteins through different by-product/water ratios and pH regimes. Foods. 2021;10:3045. https://doi.org/10.3390/foods10010013
  161. Varona S, Garcia-Redondo AB, Martinez-Gonzalez J, Salaices M, Briones AM, Rodriguez C. Vascular lysyl oxidase over-expression alters extracellular matrix structure and induces oxidative stress. Clin Investig Arterioscler. 2017;29:157-65.
  162. Vazquez JA, Fraguas J, Miron J, Valcarcel J, Perez-Martin RI, Antelo LT. Valorisation of fish discards assisted by enzymatic hydrolysis and microbial bioconversion: lab and pilot plant studies and preliminary sustainability evaluation. J Clean Prod. 2020;246:119027.
  163. Venkatesan J, Anil S, Kim SK, Shim MS. Marine fish proteins and peptides for cosmeceuticals: a review. Mar Drugs. 2017;15:143.
  164. Versteegden LR, Ter Meer M, Lomme RMLM, van der Vliet JA, Schultze Kool LJ, van Kuppevelt TH, et al. Self-expandable tubular collagen implants. J Tissue Eng Regen Med. 2018;12:1494-8. https://doi.org/10.1002/term.2685
  165. Vieira EF, Van Camp J, Ferreira IMPLVO, Grootaert C. Protein hydrolysate from canned sardine and brewing by-products improves TNF-α-induced inflammation in an intestinal-endothelial co-culture cell model. Eur J Nutr. 2018;57:2275-86. https://doi.org/10.1007/s00394-017-1503-2
  166. Vijayan A, Chithra V, Sandhya C. The relationship of lipid peroxidation and antioxidant status to selected modifiable risk factors in coronary artery disease patients. Int J Cardiol Hypertens. 2021;8:100077.
  167. Villamil O, Vaquiro H, Solanilla JF. Fish viscera protein hydrolysates: production, potential applications and functional and bioactive properties. Food Chem. 2017;224:160-71. https://doi.org/10.1016/j.foodchem.2016.12.057
  168. Vo TDL, Pham KT. Copper-chelating peptide from salmon by-product proteolysate. Int J Food Eng. 2020;16.
  169. Vujic A, Koo ANM, Prag HA, Krieg T. Mitochondrial redox and TCA cycle metabolite signaling in the heart. Free Radic Biol Med. 2021;166:287-96. https://doi.org/10.1016/j.freeradbiomed.2021.02.041
  170. Walters ME, Esfandi R, Tsopmo A. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods. 2018;7:172.
  171. Wang CH, Doan CT, Nguyen VB, Nguyen AD, Wang SL, Wang SL. Reclamation of fishery processing waste: a mini-review. Molecules. 2019a;24:2234.
  172. Wang K, Siddanakoppalu PN, Ahmed I, Pavase TR, Lin H, Li Z. Purification and identification of anti-allergic peptide from Atlantic salmon (Salmo salar) byproduct enzymatic hydrolysates. J Funct Foods. 2020;72:104084.
  173. Wang LL, Yu QL, Han L, Ma XL, Song RD, Zhao SN, et al. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat. Food Chem. 2018;244:394-402. https://doi.org/10.1016/j.foodchem.2017.10.034
  174. Wang X, Yu H, Xing R, Li P. Characterization, preparation, and purification of marine bioactive peptides. BioMed Res Int. 2017;2017:9746720.
  175. Wang YJ, Makela N, Maina NH, Lampi AM, Sontag-Strohm T. Lipid oxidation induced oxidative degradation of cereal beta-glucan. Food Chem. 2016;197:1324-30. https://doi.org/10.1016/j.foodchem.2015.11.018
  176. Wang Z, He Z, Emara A, Gan X, Li H. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chem. 2019b;288:405-12. https://doi.org/10.1016/j.foodchem.2019.02.126
  177. Wang Z, Tu J, Zhou H, Lu A, Xu B. A comprehensive insight into the effects of microbial spoilage, myoglobin autoxidation, lipid oxidation, and protein oxidation on the discoloration of rabbit meat during retail display. Meat Sci. 2021;172:108359.
  178. Wei LG, Chang HI, Wang Y, Hsu S, Dai LG, Fu KY, et al. A gelatin/collagen/polycaprolactone scaffold for skin regeneration. PeerJ. 2019;7:e6358.
  179. Wellenstein MD, de Visser KE. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 2018;48:399-416. https://doi.org/10.1016/j.immuni.2018.03.004
  180. Wibawa SF, Retnoningrum DS, Suhartono MT. Acid soluble collagen from skin of common carp (Cyprinus carpio L), red snapper (Lutjanus sp.) and milkfish (Chanos chanos). World Appl Sci J. 2015;33:990-5.
  181. Woo M, Song YO, Kang KH, Noh JS. Anti-obesity effects of collagen peptide derived from skate (Raja kenojei) skin through regulation of lipid metabolism. Mar Drugs. 2018;16:306.
  182. World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010. p. 1-60.
  183. World Health Organization. World health statistics 2020: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization; 2020. p. 77.
  184. Wu W, Li B, Hou H, Zhang H, Zhao X. Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode. J Funct Foods. 2017;35:418-27. https://doi.org/10.1016/j.jff.2017.06.013
  185. Xu X, Liu A, Hu S, Ares I, Martinez-Larranaga MR, Wang X, et al. Synthetic phenolic antioxidants: metabolism, hazards and mechanism of action. Food Chem. 2021:129488.
  186. Yaghoubzadeh Z, Peyravii Ghadikolaii F, Kaboosi H, Safari R, Fattahi E. Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. Int J Pept Res Ther. 2020;26:625-32. https://doi.org/10.1007/s10989-019-09869-5
  187. Yang XR, Zhao YQ, Qiu YT, Chi CF, Wang B. Preparation and characterization of gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) bone stimulated by in vitro gastrointestinal digestion. Mar Drugs. 2019;17:78.
  188. Ye Q, Meng X, Jiang L. Identification and assessment of residual levels of the main oxidation product of tert-butylhydroquinone in frying oils after heating and its cytotoxicity to RAW 264.7 cells. Food Chem. 2018;264:293-300. https://doi.org/10.1016/j.foodchem.2018.05.059
  189. Yu F, He K, Dong X, Zhang Z, Wang F, Tang Y, et al. Immunomodulatory activity of low molecular-weight peptides from Nibea japonica skin in cyclophosphamide-induced immunosuppressed mice. J Funct Foods. 2020;68:103888.
  190. Yuswan MH, A Jalil NH, Mohamad H, Keso S, Mohamad NA, Tengku Md Yusoff TS, et al. Hydroxyproline determination for initial detection of halal-critical food ingredients (gelatin and collagen). Food Chem. 2021;337:127762.
  191. Zahra K, Patel S, Dey T, Pandey U, Mishra SP. A study of oxidative stress in cervical cancer-an institutional study. Biochem Biophys Rep. 2020;25:100881.
  192. Zamora-Sillero J, Gharsallaoui A, Prentice C. Peptides from fish by-product protein hydrolysates and its functional properties: an overview. Mar Biotechnol. 2018;20:118-30. https://doi.org/10.1007/s10126-018-9799-3
  193. Zamorano-Apodaca JC, Garcia-Sifuentes CO, Carvajal-Millan E, Vallejo-Galland B, Scheuren-Acevedo SM, Lugo-Sanchez ME. Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chem. 2020;331:127350.
  194. Zeller D, Cashion T, Palomares M, Pauly D. Global marine fisheries discards: a synthesis of reconstructed data. Fish Fish. 2018;19:30-9. https://doi.org/10.1111/faf.12233
  195. Zhang K, Li J, Hou H, Zhang H, Li B. Purification and characterization of a novel calcium-binding decapeptide from Pacific cod (Gadus Macrocephalus) bone: molecular properties and calcium chelating modes. J Funct Foods. 2019a;52:670-9. https://doi.org/10.1016/j.jff.2018.11.042
  196. Zhang L, Zhao GX, Zhao YQ, Qiu YT, Chi CF, Wang B. Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna (Katsuwonus pelamis) head. Antioxidants. 2019b;8:318.
  197. Zhang X, Dai Z, Zhang Y, Dong Y, Hu X. Structural characteristics and stability of salmon skin protein hydrolysates obtained with different proteases. LWT-Food Sci Technol. 2022;153:112460.
  198. Zhou DY, Zhu BW, Qiao L, Wu HT, Li DM, Yang JF, et al. In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food Bioprod Process. 2012;90:148-54. https://doi.org/10.1016/j.fbp.2011.02.002
  199. Zhou Y, Mao S, Zhou M. Effect of the flavonoid baicalein as a feed additive on the growth performance, immunity, and antioxidant capacity of broiler chickens. Poult Sci. 2019;98:2790-9. https://doi.org/10.3382/ps/pez071
  200. Ziegler SJ, Mallinson SJB, St. John PC, Bomble YJ. Advances in integrative structural biology: towards understanding protein complexes in their cellular context. Comput Struct Biotechnol J. 2020;19:214-25.