• Title/Summary/Keyword: anti-inflammatory$NF-{\kappa}B$

Search Result 744, Processing Time 0.025 seconds

Anti-inflammatory effects of Chrysanthemum boreale flower (산국 꽃의 항염 활성 연구)

  • You, Ki-Sun;Bang, Chan-Sung;Lee, Kyung-Jin;Ham, In-Hye;Choi, Ho-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Objectives : Chrysanthemum boreale flower is widely distributed in Korea, Japan, China, and Eastern countries. C. boreale flower is also one of the herbs used for the treatment of various inflammatory disease in Korean Medicine. So, this research was designed to study anti-inflammatory effect of C. boreale flower and its mechanism. Methods : We investigated nitro oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production by ELISA. And expressions of inducible nitric oxide synthase (iNOS), Cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ P50/65 (NF-${\kappa}B$ P50, NF-${\kappa}B$ P65) were measured in RAW 264.7 murine macrophage cells induced by LPS. Results : MeOH ex., EtOAc fr., $CHCl_3$ fr. and Water fr. of C. boreale flower showed anti-inflammatory effect through inhibition of NO and PGE expression respectively. Among them, EtOAc fr. and $CHCl_3$ fr. inhibited production of NO and $PGE_2$ through inhibition of iNOS and COX-2 expression. And MeOH ex., EtOAc fr. and $CHCl_3$ fr. inhibited translocation of NF-${\kappa}B$ P65, NF-${\kappa}B$ P50 by inhibiting phosphrylation of $I{\kappa}B$. Conclusions : MeOH ex. EtOAc fr, $CHCl_3$ fr., and Water fr. of the C. boreale flower have anti-inflammatory activity.

Anti-inflammatory Effects of Abeliophyllum distichum Flower Extract and Associated MAPKs and NF-κB Pathway in Raw264.7 Cells

  • Lee, Jin-Wook;Kang, Yoon-Joong
    • Korean Journal of Plant Resources
    • /
    • v.31 no.3
    • /
    • pp.202-210
    • /
    • 2018
  • Abeliophyllum distichum is a medicinal plant used in regional traditional medicine to relieve pain in inflammatory processes. In this study, anti-inflammatory effects of Abeliophyllum distichum flower (ADF) extract were examined. Furthermore, possible molecular mechanisms of the anti-inflammatory effects were dissected. The anti-inflammatory activity was investigated by inhibition of lipopolysaccharide (LPS) induced pro-inflammatory cytokine production in murine macrophage-like cell line Raw264.7 cells. The measurement of the induced pro-inflammatory cytokine levels were carried out by ELISA. The phosphorylation of ERK1/2, JNK, and MAPK, and the nuclear expression of nuclear factor NF-${\kappa}B$ p65 were investigated by Western blot analysis. The extract of ADF significantly decreased the production of pro-inflammatory cytokines. In addition, the extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of NF-${\kappa}B$ p65 in activated cells. Our findings provide evidence for the popular use of Abeliophylli distichum in inflammation around Goesan region and also suggest that the flower extract has potential therapeutic benefits against various inflammatory diseases.

Anti-inflammatory activity of Ganoderma lucidum by inhibition of NF-κB p65 phosphorylation

  • Kim, Hyung Don;Park, Jeong-Yong;Noh, Hyung-Jun;Lee, Seung Eun;Lee, Jeong Hoon;Seo, Kyung Hye
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.653-660
    • /
    • 2019
  • Ganoderma lucidum, an oriental polypore fungus and medicinal mushroom, has a long history of use for promoting health and longevity in Korea, China, and other Asian countries. This study was aimed at determining the anti-inflammatory activity and mechanism of action of Ganoderma lucidum in murine macrophage RAW 264.7 cells. Ganoderma lucidum was extracted with ethanol and freeze-dried. The anti-inflammatory effect (nitrite production) of Ganoderma lucidum extracts was tested using a nitric oxide (NO) colorimetric assay. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to quantify the mRNA expression of cytokines including tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin $(IL)-1{\beta}$, and IL-6. Western blotting was performed to measure the expression levels of inflammation-related proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B ($NF-{\kappa}B$) p65, and phosphorylated $NF-{\kappa}B$ p65. The NO colorimetric assay showed that NO production increased with the treatment of lipopolysaccharide in (LPS)-activated RAW 264.7 macrophages and decreased with the cotreatment of Ganoderma lucidum extracts and LPS. Ganoderma lucidum extracts repressed the mRNA expressions of cytokines, which were increased after the LPS treatment. In addition, Ganoderma lucidum extracts inhibited the LPS-induced expression of iNOS and COX-2 and the LPS-induced phosphorylation of $NF-{\kappa}B$ p65. These results suggest that the Ganoderma lucidum extracts exert an anti-inflammatory activity by inhibiting $NF-{\kappa}B$ related proteins and cytokines.

Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS: Pro-inflammatory cytokines including tumor necrosis factor-${\alpha}$ and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B ($NF-{\kappa}B$), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS: Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-${\alpha}$, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and $NF-{\kappa}B$ transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced $NF-{\kappa}B$ and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION: These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, $NF-{\kappa}B$, and MAPKs pathways.

Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells

  • Ko, Wonmin;Sohn, Jae Hak;Kim, Youn-Chul;Oh, Hyuncheol
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.240-247
    • /
    • 2015
  • Viridicatol (1) has previously been isolated from the extract of the marine-derived fungus Penicillium sp. SF-5295. In the course of further biological evaluation of this quinolone alkaloid, anti-inflammatory effect of 1 in RAW264.7 and BV2 cells stimulated with lipopolysaccharide (LPS) was observed. In this study, our data indicated that 1 suppressed the expression of well-known pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and consequently inhibited the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 ($PGE_2$) in LPS stimulated RAW264.7 and BV2 cells. Compound 1 also reduced mRNA expression of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). In the further evaluation of the mechanisms of these anti-inflammatory effects, 1 was shown to inhibit nuclear factor-kappa B ($NF-{\kappa}B$) pathway in LPS-stimulated RAW264.7 and BV2 cells. Compound 1 blocked the phosphorylation and degradation of inhibitor kappa B $(I{\kappa}B)-{\alpha}$ in the cytoplasm, and suppressed the translocation of $NF-{\kappa}B$ p65 and p50 heterodimer in nucleus. In addition, viridicatol (1) attenuated the DNA-binding activity of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 and BV2 cells.

Structural Features of Polyphenolic Compounds in Their NO Inhibitory Activities

  • Kim, Byung-Hun;Lee, Yong-Gyu;Kim, Tae-Woong;Cho, Jae-Youl
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.79-85
    • /
    • 2009
  • Polyphenolic compounds are reported to have various pharmacological activities such as anti-oxidative, anti-cancerous, anti-inflammatory and anti-aging effects. Although numerous papers explore their functional roles in many different cellular actions, not many studies handle their structural features in anti-inflammatory responses. In this study, therefore, we examined structural role of substituted transstilbenes in their NO inhibitory and NF-${\kappa}B$ suppressive activities. Of 10 compounds tested, 4 compounds (cinnamic acid, resveratrol, piceatannol and curcumin) displayed NO inhibitory activities in a dose-dependent manner. Similarly, these compounds blocked LPS-induced cytotoxicity of RAW264.7 cells. All NO inhibitory compounds also inhibited $I{\kappa}B{\alpha}$ phosphorylation, a hallmark for NF-${\kappa}B$ activation. However, these inhibitory compounds exhibited distinct suppressive pattern in tumor necrosis factor (TNF)-${\alpha}$- or phorbol-12-myristate-13-acetate (PMA)-induced NF-${\kappa}B$ and AP-1 activation. According to structure-activity relationship study, polarity and size of ring B seem to be important for diminishing NO production. Therefore, our data suggest that substituted trans-stilbenes can be developed as novel anti-inflammatory drug or further developed as lead compounds for another improvement.

Sesquiterpene Derivatives Isolated from Cyperus rotundus L. Inhibit Inflammatory Signaling Mediated by NF-${\kappa}B$

  • Khan, Salman;Choi, Ran-Joo;Lee, Dong-Ung;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.250-255
    • /
    • 2011
  • The immune system is finely balanced by the activities of pro-inflammatory and anti-inflammatory mediators or cytokines. Unregulated activities of these mediators can lead to the development of various inflammatory diseases. A variety of safe and effective anti-inflammatory agents are available with many more drugs under development. Of the natural compounds, the sesquiterpenes (nootkatone, ${\alpha}$-cyperone, valencene and ${\alpha}$-selinene) isolated from C. rotundus L. have received much attention because of their potential antiinflammatory effects. However, limited studies have been reported regarding the influence of sesquiterpene structure on anti-inflammatory activity. In the present study, the anti-inflammatory potential of four structurally divergent sesquiterpenes was evaluated in lipopolysaccaride (LPS)-stimulated RAW 264.7 cells, murine macrophages. Among the four sesquiterpenes, ${\alpha}$-cyperone and nootkatone, showed stronger anti-inflammatory and a potent NF-${\kappa}B$ inhibitory effect on LPS-stimulated RAW 264.7 cells. Molecular analysis revealed that various inflammatory enzymes (iNOS and COX-2) were reduced significantly and this correlated with downregulation of the NF-${\kappa}B$ signaling pathway. Additionally, electrophoretic mobility shift assays (EMSA) elucidated that nootkatone and ${\alpha}$-cyperone dramatically suppressed LPS-induced NF-${\kappa}B$-DNA binding activity using 32Plabeled NF-${\kappa}B$ probe. Hence, our data suggest that ${\alpha}$-cyperone and nootkatone are potential therapeutic agents for inflammatory diseases.

Anti-inflammatory Effects of Gelidium amansii in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 Gelidium amansii의 항염증 효과)

  • Choi, Won-Sik;Kim, Young-Sun;Lee, Sang-Hyun;Chai, Kyu-Yun;Lee, Young-Haeng
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.673-677
    • /
    • 2009
  • In order to verify the anti-inflammatory effects of Gelidium amansii, RAW264.7 macrophages were incubated with the extract of 70% ethanol solution (Ex), and activated with the endotoxin lipopolysaccharide (LPS). Ex inhibited the expression of the pro-inflammatory enzymes, including inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of iNOS-mediated NO and COX-2-mediated prostglandin $E_2$ ($PGE_2$) production in a dose-dependent manner. Ex also reduced the release of the pro-inflammatory cytokines, including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-1${\beta}$ (IL-1${\beta}$) and IL-6 in LPS-activated macrophages, The observed anti-inflammatory effects of Ex was associated with inactivation of the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) that mediates the induction of iNOS, COX-2, TNF-${\alpha}$, IL-1${\beta}$, and IL-6. Further studies showed that Ex inactivated NF-${\kappa}B$ through inhibition of phosphorylation of the inhibitory ${\kappa}B$ ($l{\kappa}B$), Taken together, these results suggest that Gelidium amansii exerts anti-inflammatory effects by inhibiting the expression of pro-inflammatory enzymes and the secretion of pro-inflammatory cytokines via inactivation of NF-${\kappa}B$ and/or $l{\kappa}B$.

Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

  • Sung, Nak Yoon;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$ in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-${\kappa}B$-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-${\kappa}B$ nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-${\kappa}B$ activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-${\kappa}B$ activation.

Tolfenamic Acid Suppresses Inflammatory Stimuli-Mediated Activation of NF-κB Signaling

  • Shao, Hong Jun;Lou, Zhiyuan;Jeong, Jin Boo;Kim, Kui Jin;Lee, Jihye;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • Tolfenamic acid (TA) is a traditional non-steroid anti-inflammatory drug (NSAID) and has been broadly used for the treatment of migraines. Nuclear factor kappa B (NF-${\kappa}B$) is a sequence-specific transcription factor and plays a key role in the development and progression of inflammation and cancer. We performed the current study to investigate the underlying mechanisms by which TA suppresses inflammation focusing on NF-${\kappa}B$ pathway in TNF-${\alpha}$ stimulated human normal and cancer cell lines and lipopolysaccharide (LPS)-stimulated mouse macrophages. Different types of human cells (HCT116, HT-29 and HEK293) and mouse macrophages (RAW264.7) were pre-treated with different concentrations of TA and then exposed to inflammatory stimuli such as TNF-${\alpha}$ and LPS. Transcriptional activity of NF-${\kappa}B$, $l{\kappa}B-{\alpha}$-degradation, p65 translocation and mitogen-activated protein kinase (MAPK) activations were measured using luciferase assay and Western blots. Pre-treatment of TA repressed TNF-${\alpha}$- or LPS-stimulated NF-${\kappa}B$ transactivation in a dose-dependent manner. TA treatment reduced degradation of $l{\kappa}B-{\alpha}$ and subsequent translocation of p65 into nucleus. TA significantly down-regulated the phosphorylation of c-Jun N-terminal kinase (JNK). However, TA had no effect on NF-${\kappa}B$ signaling and JNK phosphorylation in HT-29 human colorectal cancer cells. TA possesses anti-inflammatory activities through suppression of JNK/NF-${\kappa}B$ pathway in different types of cells.