• 제목/요약/키워드: anti-fatty liver

검색결과 182건 처리시간 0.021초

Kaurenoic acid, a Diterpene Derived from Aralia continentalis, Alleviates Lipogenesis in HepG2 Cells

  • Kim, Yu Gon;Kim, Jae Hyeon;Jo, Yong Wan;Kwun, Min Jung;Han, Chang Woo
    • 대한한의학회지
    • /
    • 제36권4호
    • /
    • pp.74-79
    • /
    • 2015
  • Objectives: Here we investigated the anti-lipogenic potential of kaurenoic acid (KA), a diterpene derived from Aralia continentalis, in a cellular model of non-alcoholic fatty liver disease. Methods: HepG2 cells were treated with palmitate for 24h to induce intracellular lipid accumulation. To assess the influence of KA on steatotic HepG2 cells, various concentration of KA was co-administered. After palmitate treatment, Intracellular triglyceride content was measured. Expression level of several lipogenic genes, sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD-1) were measured using Western-blot analyses or RT-PCR. Results: Palmitate markedly increased intracellular triglyceride level and expression of related lipogenic genes in HepG2 cells, and which was relieved by co-administered KA. Conclusions: It is conceivable that that KA may have a pharmacological potential to reduce lipid accumulation in non-alcoholic fatty liver disease.

HFD 유도 C57BL/6J 비만 mice에서 AMPK/ACC/CPT-1 경로 촉진을 통한 산딸기 추출물의 비만 및 비알코올성 지방간 질환에 대한 보호 효과 (Protective Effect of Rubus crataegifolius Extracts Against Obesity and Non-alcoholic Fatty Liver Disease via Promotion of AMPK/ACC/CPT-1 Pathway in HFD-induced C57BL/6J Obese Mice)

  • 이영익;이희진;표수진;박용현;이명민;손호용;조진숙
    • 생명과학회지
    • /
    • 제33권12호
    • /
    • pp.967-977
    • /
    • 2023
  • Rubus crataegifolius (RC)는 장미과에 속하는 전통적인 아시아 약용 식물이다. RC 열매는 항산화 작용을 통해 성인병을 예방하는 것으로 알려져 있다. 본 연구에서는 RC 열매 추출물(RCex)이 비만과 비알코올성 지방간 질환(NAFLD)에 미치는 영향을 동물 모델을 통해 평가하였다. 28마리의 수컷 C57BL/6J 마우스에 8주간 비만을 유도한 후, 추출물을 8주간 경구 투여하였다. 그룹 1은 일반 대조군으로 표준사료를 섭취하였다. 그룹 2는 HFD 대조군으로, 그룹 3에는 심바스타틴(6.5 mg/kg/일)을, 그룹 4에는 RCex (200 mg/kg)을 투여하였다. RCex투여는 실험 마우스의 체중, 지방 조직, 간 무게를 감소시켰으며, 또한 지질 대사(ALT, AST, TC, TG, LDL, HDL)를 포함한 생화학적 바이오마커를 개선하였다. AMPK의 활성화는 지방생성 유전자(LXR, SREBP-1c, FAS, ACC1)의 발현을 감소시켰으며, RCex에 의한 CPT 활성 증진 효과를 검증하였다. RCex는 또한 에너지 소비 및 신진대사와 관련된 호르몬(adiponectin 및 leptin)의 혈장 수준에도 영향을 미쳤다. 또한, RCex가 HFD로 유도된 비만 mice의 포도당 불내성을 개선했음을 확인 하였다. RCex는 AMPK의 인산화를 통해 지방산 산화 및 지방산 합성을 조절함으로써 항비만 및 항NAFLD 효과를 가짐을 처음으로 입증하였다. 이는 R. crataegifolius가 비만 및 관련 NAFLD 예방에 좋은 보충제가 될 수 있음을 시사한다.

Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease

  • Hwang, Jin-Taek;Shin, Eun Ju;Chung, Min-Yu;Park, Jae Ho;Chung, Sangwon;Choi, Hyo-Kyoung
    • Nutrition Research and Practice
    • /
    • 제12권2호
    • /
    • pp.110-117
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. MATERIALS/METHODS: The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. RESULTS: EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. CONCLUSIONS: Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.

Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • 제7권4호
    • /
    • pp.294-301
    • /
    • 2013
  • In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of ${\beta}$-oxidation-related genes, such as peroxisome proliferator-activated receptor ${\alpha}$ (PPAR-${\alpha}$), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid ${\beta}$-oxidation in mice.

Biotransformation of Intestinal Bacterial Metabolites of Ginseng Saponin to Biologically Active Fatty-acid Conjugates

  • Hasegawa Hideo;Saiki Ikuo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.317-334
    • /
    • 2002
  • Ginsenosides are metabolized (deglycosylated) by intestinal bacteria to active forms after oral administration. 20(S)-Protopanaxadiol $20-O-{\beta}-D-glucopyranoside$ (M1) and 20(S)-protopanaxatriol (M4) are the main intestinal bacterial metabolites (IBMs) of protopanaxadiol- and protopanaxatriol-type glycosides. M1 was selectively accumulated into the liver soon after its intravenous (i.v.) administration to mice, and mostly excreted as bile; however, some M1 was transformed to fatty acid ester (EMl) in the liver. EM1 was isolated from rats in a recovery dose of approximately $24mol\%.$ Structural analysis indicated that EM1 comprised a family of fatty acid mono-esters of M1. Because EM1 was not excreted as bile as Ml was, it was accumulated in the liver longer than M1. The in vitro cytotoxicity of M1 was attenuated by fatty acid esterification, implying that esterification is a detoxification reaction. However, esterified M1 (EM1) inhibited the growth of B16 melanoma more than Ml in vivo. The in vivo antitumor activity paralleled with the pharmacokinetic behavior. In the case of M4, orally administered M4 was absorbed from the small intestine into the mesenteric lymphatics followed by the rapid esterification of M4 with fatty acids and its spreading to other organs in the body and excretion as bile. The administration of M4 prior to tumor injection abrogated the enhanced lung metastasis in the mice pretreated with 2-chloroadenosine more effectively than in those pretreated with anti-asialo GMl. Both EM1 and EM4 did not directly affect tumor growth in vitro, whereas EM1 promoted tumor cell lysis by lymphocytes, particularly non-adherent splenocytes, and EM4 stimulated splenic NK cells to become cytotoxic to tumor cells. Thus, the esterification of IBM with fatty acids potentiated the antitumor activity of parental IBM through delay of the clearance and through immunostimulation. These results suggest that the fatty acid conjugates of IBMs may be the real active principles of ginsenosides in the body.

  • PDF

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.

고수 에탄올 추출물의 고지방식이 비만 동물모델에서의 항비만효과 (Ant-Obesity Effect of Coriandrum sativum L. Ethanol Extract in High Fat-Induced Obesity Animal Model)

  • 이락원;강순아
    • 한국식품영양학회지
    • /
    • 제36권4호
    • /
    • pp.296-308
    • /
    • 2023
  • This study investigated the anti-obesity effects of Coriandrum sativum L. ethanol extracts in a high fat diet-induced obesity model (DIO). We confirmed the anti-obesity effects by analysing the expression of the related proteins, weight gain, dietary intake, dietary efficiency, blood biochemistry, histological analysis and western blot analysis. After oral administration of Coriandrum sativumL. ethanol extracts at concentrations of 250 and 500 mg/kg, a significant improvement in dietary efficiency, reduction in weight gain, triglycerides, total cholesterol and LDL-cholesterol in blood lipid was observed for 8 weeks. In addition, improvement in blood glucose and metabolism confirmed through glucose tolerance test was observed. Further, the concentration of alanine transaminase (ALT) in blood was significantly decreased, which improved the fatty liver caused by high-fat diet intake as confirmed by liver tissue analysis. This phenomenon was confirmed to decrease the expression of fat accumulation-related PPARγ and FAS protein in the liver tissue. Especially, it is believed that FAS, a liposynthetic enzyme, has a stronger inhibitory effect than PPARγ. Therefore, Coriandrum sativum L. ethanol extract is thought to improve obesity by reducing blood lipids levels, improving glucose metabolism and inhibiting synthesis of the fat that accumulates in the liver in high-fat diet-induced obesity animal models.

Free fatty acid-induced histone acetyltransferase activity accelerates lipid accumulation in HepG2 cells

  • Chung, Sangwon;Hwang, Jin-Taek;Park, Jae Ho;Choi, Hyo-Kyoung
    • Nutrition Research and Practice
    • /
    • 제13권3호
    • /
    • pp.196-204
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease triggered by epigenetic alterations, including lysine acetylation at histone or non-histone proteins, affecting the stability or transcription of lipogenic genes. Although various natural dietary compounds have anti-lipogenic effects, their effects on the acetylation status and lipid metabolism in the liver have not been thoroughly investigated. MATERIALS/METHODS: Following oleic-palmitic acid (OPA)-induced lipid accumulation in HepG2 cells, the acetylation status of histone and non-histone proteins, HAT activity, and mRNA expression of representative lipogenic genes, including $PPAR{\gamma}$, SREBP-1c, ACLY, and FASN, were evaluated. Furthermore, correlations between lipid accumulation and HAT activity for 22 representative natural food extracts (NExs) were evaluated. RESULTS: Non-histone protein acetylation increased following OPA treatment and the acetylation of histones H3K9, H4K8, and H4K16 was accelerated, accompanied by an increase in HAT activity. OPA-induced increases in the mRNA expression of lipogenic genes were down-regulated by C-646, a p300/CBP-specific inhibitor. Finally, we detected a positive correlation between HAT activity and lipid accumulation (Pearson's correlation coefficient = 0.604) using 22 NExs. CONCLUSIONS: Our results suggest that NExs have novel applications as nutraceutical agents with HAT inhibitor activity for the prevention and treatment of NAFLD.

AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과 (Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway)

  • 이세희;박해진;신미래;노성수
    • 대한본초학회지
    • /
    • 제37권2호
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

Kaurenoic acid, a natural substance from traditional herbal medicine, alleviates palmitate induced hepatic lipid accumulation via Nrf2 activation

  • Han, Changwoo
    • 대한한의학회지
    • /
    • 제41권4호
    • /
    • pp.64-71
    • /
    • 2020
  • Objectives: This study was done to look into whether Nrf2 take some role in the anti-lipogenic effect of kaurenoic acid in a nonalcoholic fatty liver disease (NAFLD) cellular model. Materials and Methods: We measured the effect of kaurenoic acid on intracellular steatosis and Nrf2 activation. Next, the effect of kaurenoic acid on SREBP-1c and some lipogenic genes in palmitate treated HepG2 cells with or without Nrf2 silencing. Results: The increased SREBP-1c expression was significantly decreased by concomitant kaurenoic acid treatment in non-targeting negative control siRNA transfected HepG2 cells. However, kaurenoic acid did not significantly inhibited increased SREBP-1c level in Nrf2 specific siRNA transfected HepG2 cells Conclusions: Kaurenoic acid has a potential to activate Nrf2, which may suppress SREBP-1c mediated intracellular steatosis in HepG2 cells.