DOI QR코드

DOI QR Code

Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease

  • Received : 2017.10.17
  • Accepted : 2018.02.21
  • Published : 2018.04.01

Abstract

BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. MATERIALS/METHODS: The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. RESULTS: EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. CONCLUSIONS: Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.

Keywords

References

  1. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005;129:113-21. https://doi.org/10.1053/j.gastro.2005.04.014
  2. Cohen JC, Hortaon JD, Horbbes HH. Human fatty liver disease: old questions and new insights. Science 2011;332:1519-23. https://doi.org/10.1126/science.1204265
  3. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004;114:147-52. https://doi.org/10.1172/JCI200422422
  4. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med 2004;10:355-61. https://doi.org/10.1038/nm1025
  5. Lei F, Zhang ZN, Wang W, Xing DM, Xie WD, Su N, Du LJ. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced ovese mice. Int J Obes (Lond) 2007;31:1023-9. https://doi.org/10.1038/sj.ijo.0803502
  6. Watanabe T, Hata K, Hiwatashi K, Hori K, Suzuki N, Itoh H. Suppression of murine peradipocyte differentiation and reduction of visceral fat accumulation by a Petasites Japonicus ethanol extract in mice fed a high-fat diet. Biosci Biotechnol Biochem 2010;74:499-503. https://doi.org/10.1271/bbb.90684
  7. Willebrords J, Pereira I, Maes M, Yanguas S, Colle I, Bossche B, Silva T, Oliveira C, Andraus W, Alves V, Cogliati B, Vinken M. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 2015;59:106-25. https://doi.org/10.1016/j.plipres.2015.05.002
  8. Tannapfel A, Denk H, Dienes HP, Langner C, Schirmacher P, Trauner M, Flott-Rahmel B. Histopathological diagnosis of non-alcoholic and alcoholic fatty liver disease. Virchows Arch 2011;458:511-23.
  9. Burt AD, Mutton A, Day CP. Diagnosis and interpretation of steatosis and steatohepatitis. Semin Diagn Pathol 1998;15:246-58.
  10. Tolman KG, Dalpiaz AS. Treatment of non-alcoholic fatty liver disease. Ther Clin Risk Manag 2007;3:1153-63.
  11. Chalasani N, Guo X, Loomba R, Goodarzi MO, Haritunians T, Kwon S, Cui J, Taylor KD, Wilson L, Cummings OW, Chen YD, Rotter JI; Nonalcoholic Steatohepatitis Clinical Research Network. Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology 2010;139:1567-76, 1576.e1-6.
  12. Anstee QM, Day CP. The genetics NAFLD. Nat Rev Gastroenterol Hepatol 2013;10:645-55. https://doi.org/10.1038/nrgastro.2013.182
  13. Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010;12 Suppl 2:83-92. https://doi.org/10.1111/j.1463-1326.2010.01275.x
  14. Sung YY, Yoon Y, Kim SJ, Yang WK, Kim HK. Anti-obesity activity of Allium fistulosum L. extract by downregulation of the expression of lipogenic genes in high-fat diet-induced obese mice. Mol Med Rep 2011;4:431-5.
  15. Fenwick GR, Hanley AB. The genius Allium-part 1. Crit Rev Food Sci Nutr 1985;22:199-271. https://doi.org/10.1080/10408398509527415
  16. Chen JH, Chen HI, Wang JS, Tsai SJ, Jen CJ. Effects of Welsh onion extracts on human platelet function in vitro. Life Sci 2000;66:1571-9. https://doi.org/10.1016/S0024-3205(00)00477-X
  17. Yamamoto Y, Aoyama S, Hamaguchi N, Rhi GS. Antioxidative and antihypertensive effects of Welsh onion on rats fed with a high-fat high-sucrose diet. Biosci Biotechnol Biochem 2005;69:1311-7.
  18. Yamamoto Y, Yasuoka A. Welsh onion attenuates hyperlipidemia in rats fed on high-fat high-sucrose diet. Biosci Biotechnol Biochem 2010;74:402-4. https://doi.org/10.1271/bbb.90613
  19. Beuchat LR. Control of foodborne pathogens and spoilage microorganisms by naturally occurring antimicrobials. In: Wilson CL, Droby S, editors. Microbial Food Contamination. Boca Raton (FL): CRC Press; 2001. p.149-70.
  20. Pagano G, Pacini G, Musso G, Gambino R, Mecca F, Depetris N, Cassader M, David E, Cavallo-Perin P, Rizzetto M. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic. Hepatology 2002;35:367-72. https://doi.org/10.1053/jhep.2002.30690
  21. Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res 2010;2:95-104.
  22. Zhu C, Xie P, Zhao F, Zhang L, An W, Zhan Y. Mechanism of the promotion of steatotic HepG2 cell apoptosis by cholesterol. Int J Clin Exp Pathol 2014;7:6807-13.
  23. Kang OH, Kin SB, Seo YS, Joung DK, Mun SH, Choi JG, Lee YM, Kang DG, Lee HS, Kwon DY. Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. Eur Rev Med Pharmacol Sci 2013;17:2578-86.
  24. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002;109:1125-31. https://doi.org/10.1172/JCI0215593
  25. Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation o sterol regylatiory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A 1998;95:5987-92. https://doi.org/10.1073/pnas.95.11.5987
  26. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 2003;100:12027-32. https://doi.org/10.1073/pnas.1534923100
  27. Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 1997;99:838-45. https://doi.org/10.1172/JCI119247
  28. Wang BS, Huang GJ, Lu YH, Chang LW. Anti-inflammatory effects of an aqueous extract of Welsh onion green leaves in mice. Food Chem 2013;138:751-6.
  29. Wang BS, Chen JH, Liang YC, Duh PD. Effects of welsh onion on oxidation of low-density lipoprotein and nitric oxide production in macrophage cell line RAW 264.7. Food Chem 2005;91:147-55. https://doi.org/10.1016/j.foodchem.2004.06.009
  30. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007;15:252-9. https://doi.org/10.1007/s10787-007-0013-x
  31. Sala A, Folco G. Actual role of prostaglandins in inflammation. Drug Investig 1991;3:4-9. https://doi.org/10.1007/BF03258310
  32. Aoyama S, Hiraike T, Yamamoto Y. Antioxidant, lipid-lowering and antihypertensive effects of red welsh onion (Allium fistulosum) in spontaneously hypertensive rats. Food Sci Technol Res 2008;14:99-103.
  33. Asrih M, Jornayvaz FR. Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. J Endocrinol 2013;218:R25-36. https://doi.org/10.1530/JOE-13-0201
  34. Tilg H, Moschen AR. Evolution on inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010;52:1836-46. https://doi.org/10.1002/hep.24001
  35. Lima-Cabello E, Garcia-Mediavilla MV, Miguilena-Colina ME, Vargas-Castrillon J, Lozano-Rodriguez T, Femandez-Bermejo M, Olcoz JL, Conzalez-Gallego J, Garcia-Monzon C, Sanchez-Campos S. Enhanced expression on pro-inflammatory mediators and liver X-receptorregulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci 2011;120:239-50. https://doi.org/10.1042/CS20100387
  36. Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S. MeComico A, Masuoko H, Gores G. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol 2011;301:G825-34.
  37. Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, Tang PH, Miles L, Miles MV, Balistrere WF, Woods SC, Seeley RJ. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 2010;52:934-44. https://doi.org/10.1002/hep.23797
  38. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol 2008;295:G987-95. https://doi.org/10.1152/ajpgi.90272.2008
  39. Machado MV, Michelotti GA, Xie G, Almeida Pereira T, Boursier J, Bohnic B, Guy CD, Diehl AM. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS One 2015;10:e0127991.
  40. Almind K, Kahn CR. Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 2004;53:3274-85. https://doi.org/10.2337/diabetes.53.12.3274
  41. Hoevenaars EP, Keijer J, Swarts HJ, Snaas-Alders S, Bekkenkamp-Grovenstein M, van Schothorst EM. Effects of dietary history on energy metabolism and physiological parameters in C57BL/6J mice. Exp Physiol 2013;98:1053-62.
  42. Bordia A, Verma SK, Vyas AE, Khabya BL, Rathore AS, Bhu N, Dedi HK. Effect of essential oil and garlic on experimental atherosclerosis in rabbits. Atherosclerosis 1977;26:379-86. https://doi.org/10.1016/0021-9150(77)90092-2
  43. Bordia A, Verma SK, Srivastava KC. Effect of garlic (Allium sativum) on blood lipids, blood sugar, fibrinogen and fibrinolytic activity in patients with coronary artery disease. Prostaglandins Leukot Essent Fatty Acids 1998;58:257-63. https://doi.org/10.1016/S0952-3278(98)90034-5
  44. Thomson M, Al-Qattan KK, Bordia T, Ali M. Including garlic in the diet may help lower blood glucose, cholesterol, and triglycerides. J Nutr 2006;136:800S-802S. https://doi.org/10.1093/jn/136.3.800S
  45. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 2016;7:27-31. https://doi.org/10.4103/0976-0105.177703

Cited by

  1. Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum Regel vol.7, pp.2, 2018, https://doi.org/10.1002/fsn3.926
  2. Free fatty acid-induced histone acetyltransferase activity accelerates lipid accumulation in HepG2 cells vol.13, pp.3, 2018, https://doi.org/10.4162/nrp.2019.13.3.196
  3. Rice Porridge Containing Welsh Onion Root Water Extract Alleviates Osteoarthritis-Related Pain Behaviors, Glucose Levels, and Bone Metabolism in Osteoarthritis-Induced Ovariectomized Rats vol.11, pp.7, 2018, https://doi.org/10.3390/nu11071503
  4. In vitro Anticancer Activity of Quinoa and Safflower Seeds and Their Preventive Effects on Non-alcoholic Fatty Liver vol.22, pp.8, 2018, https://doi.org/10.3923/pjbs.2019.383.392
  5. Psoralea corylifolia L. extract ameliorates nonalcoholic fatty liver disease in free‐fatty‐acid‐incubated HEPG2 cells and in high‐fat diet‐fed mice vol.85, pp.7, 2018, https://doi.org/10.1111/1750-3841.15166
  6. Fermented mulberry ( Morus alba ) leaves suppress high fat diet-induced hepatic steatosis through amelioration of the inflammatory response and autophagy pathway vol.20, pp.1, 2018, https://doi.org/10.1186/s12906-020-03076-2
  7. Effect of Allium fistulosum Extracts on the Stimulation of Longitudinal Bone Growth in Animal Modeling Diet-Induced Calcium and Vitamin D Deficiencies vol.11, pp.17, 2018, https://doi.org/10.3390/app11177786
  8. Black Mulberry Extract Elicits Hepatoprotective Effects in Nonalcoholic Fatty Liver Disease Models by Inhibition of Histone Acetylation vol.24, pp.9, 2018, https://doi.org/10.1089/jmf.2021.k.0048