• 제목/요약/키워드: anti-diabetic effects

검색결과 382건 처리시간 0.024초

Lactobacillus rhamnosus BHN-LAB 76로 발효한 흰목이버섯 (Tremella fuciformis Berk) 추출물의 항비만 및 항당뇨 효과 (Anti-obesity and Anti-diabetic Effects of the Fermented Ethanol Extracts from White Jelly Fungus (Tremella fuciformis Berk) with Lactobacillus rhamnosus BHN-LAB 76)

  • 윤여초;김병혁;김중규;이준형;박예은;박혜숙;황학수;권기석;이중복
    • 한국미생물·생명공학회지
    • /
    • 제47권3호
    • /
    • pp.323-331
    • /
    • 2019
  • 흰목이버섯(Tremella fuciformis Berk.; TF)은 흰목이과에 속하는 버섯으로 한국, 중국 및 열대지방에 분포한다. 흰목이버섯은 아시아 전통 의학에서 고혈압, 노화, 암 및 동맥 경화를 예방하는 것으로 알려져 있다. 본 연구는 L. rhamnosus BHN-LAB 76로 발효된 흰목이버섯 추출물의 항 당뇨 효능에 대해 조사하였다. 그 결과, 발효된 흰목이버섯 추출물은 발효하지 않은 추출물에 비해 ${\alpha}$-glucosidase 저해 활성을 증가시키고, 3T3-L1 전지방 세포에서의 지방세포 분화 유도를 통한 지방구 생성을 억제하는 것을 확인하였다. 이러한 발효된 흰목이버섯은 지방 및 세포 분화 유도에 관여한다고 알려진 AMPK, Akt의 유전자 발현을 촉진하고, JNK의 발현을 억제하는 것을 통해 지방생성억제 및 항 당뇨 활성이 증가됨을 확인하였다. 따라서 L. rhamnosus BHN-LAB 76으로 발효한 흰목이버섯 추출물은 항비만 및 항당뇨 기능성 소재 및 식품 개발로의 활용이 가능할 수 있음을 제안한다.

Therapeutic potential of traditionally used medicinal plant Andrographis paniculata (Burm. F.) against diabesity: An experimental study in rats

  • Thakur, Ajit Kumar;Chatterjee, Shyam Sunder;Kumar, Vikas
    • 셀메드
    • /
    • 제4권1호
    • /
    • pp.7.1-7.8
    • /
    • 2014
  • Metabolic effects of ten daily doses of standardized extract of Andrographis paniculata leaves (AP) rich in andrographolide were evaluated in a rat model of type-2 diabetes and in diet induced obese rats. AP was administered per-orally as suspension in 0.3% carboxymethylcellulose at doses of 50, 100 and 200 mg/kg/day for 10 consecutive days. Blood glucose, insulin and lipid profile of rats were measured by using enzyme kits. In addition, effects of such treatments on anti-oxidant enzymes activity and histopathological changes in various organs of diabetic rats were assessed. AP treatments reversed body weight losses and increased plasma insulin level in diabetic rats. The anti-oxidant enzymes activity became normal and histopathological changes observed in pancreas, liver, kidney and spleen of diabetic animals were less severe in extract treated groups. On the other hand, hyperinsulinemia and increased body weight gains observed in high fat or fructose fed rats were less severe in the extract treated groups. These observations revealed therapeutic potentials of the extract for treatments of diabesity associated metabolic disorders, and suggest that the effects of the extract on insulin homeostasis depend on the metabolic status of animals. Activation of cytoprotective mechanisms could be involved in its mode of action.

오가피와 죽력 배합약물이 Streptozotocin으로 유발된 당뇨 생쥐에 미치는 영향 (Effects of Mixed Extracts with Acanthopanax chiisanensis and Bambusae Caulis in Liquamen on the Blood Sugar of Diabetic mice induced with Streptozotocin)

  • 장경선;어성복;전병관;최찬헌
    • 동의생리병리학회지
    • /
    • 제17권3호
    • /
    • pp.742-745
    • /
    • 2003
  • This study was carried out to investigate the optimal mixed extract with Acanthopanax Chiisanensis Nakai in order to strengthen anti-diabetic effects on the hyperglycemia induced by streptozotocin in mice. The original Bambusae Caulis in Liquamen filtered and refined. The effects of Acanthopanax Chiisanensis Nakai with Bambusae Caulis in Liquamen were administered to mice for 4weeks and its anti-diabetic effect examined. Mice used in this experiment were divided into two groups and distrilled water(control), Acanthopanax Chiisanensis Nakai mixed with refined Bambusae Caulis in Liquamen(AC+BCL.D) were given orally for 28days respectively. And then, experimental groups were observed in terms of blood sugar, creatinine, BUN and GPT. The amount of glucose was significantly decreased compared with the control group(P < 0.01). The amount of creatinine was decreased compared with the control group(P < 0.05). The amount of GPT did not show any differences between two groups.

제2형 당뇨모델 db/db 마우스에서 밀순 물추출물의 항당뇨 효과 (Anti-diabetic Effects of Triticum aestivum L. Water Extracts in db/db Mice as an Animal Model of Diabetes Mellitus Type II)

  • 이선희;임성원;이영미;허정무;이회선;김대기
    • 생약학회지
    • /
    • 제41권4호
    • /
    • pp.282-288
    • /
    • 2010
  • We evaluated the anti-diabetic effects of Triticum aestivum sprout water extract (TA) in diabetes mellitus type 2. For the experiments, the diabetic animal model db/db mice were divided to 3 groups: diabetic control (db/db) and two experimental groups orally treated with 25 and 100 mg/kg single dose of TA (TA-25 and TA-100, respectively). The lean mice were used as the non-diabetic normal control. All mice have free access to water and AIN-93 diet. TA was administrated to diabetic mice for 5 weeks and the diabetic clinical markers, including blood glucose level, body weight, food intake and insulin level, were measured at a time. After administration for 5 weeks, the blood glucose level was decreased 1.10 and 1.98 folds in TA-25 and TA-100 groups, respectively, compared with db/db group. The body weight and diet consumption were significantly reduced by TA treatment in dose-dependent manner. The treatments of TA-100 also significantly decreased remarkedly liver weight and slightly serum insulin levels when compared with them of the diabetic control group. However the immunohistochemical staining for insulin clearly showed high expression of insulin in the pancreatic islet cells derived from all db/db mice, even if TA was administrated. Moreover, TA-100 treatment significantly improved impaired glucose tolerance in diabetic db/db mice. The results suggest that TA has anti-hyperglycemic effect attenuating blood glucose in the animal model of type 2 diabetes and might be useful as a functional diet for human diabetic diseases.

Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats

  • Yang, Dong Kwon;Kang, Hyung-Sub
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.130-138
    • /
    • 2018
  • Quercetin and resveratrol are known to have beneficial effects on the diabetes and diabetic complication, however, the effects of combined treatment of these compounds on diabetes are not fully revealed. Therefore, the present study was designed to investigate the combined antidiabetic action of quercetin (QE) and resveratrol (RS) in streptozotocin (STZ)-induced diabetic rats. To test the effects of co-treated with these compounds on diabetes, serum glucose, insulin, lipid profiles, oxidative stress biomarkers, and ions were determined. Additionally, the activities of hepatic glucose metabolic enzymes and histological analyses of pancreatic tissues were evaluated. 50 male Sprague-Dawley rats were divided into five groups; normal control, 50 mg/kg STZ-induced diabetic, and three (30 mg/kg QE, 10 mg/kg RS, and combined) compound-treated diabetic groups. The elevated serum blood glucose levels, insulin levels, and dyslipidemia in diabetic rats were significantly improved by QE, RS, and combined treatments. Oxidative stress and tissue injury biomarkers were dramatically inhibited by these compounds. They also shown to improve the hematological parameters which were shown to the hyperlactatemia and ketoacidosis as main causes of diabetic complications. The compounds treatment maintained the activities of hepatic glucose metabolic enzymes and structure of pancreatic ${\beta}-cells$ from the diabetes, and it is noteworthy that cotreatment with QE and RS showed the most preventive effect on the diabetic rats. Therefore, our study suggests that cotreatment with QE and RS has beneficial effects against diabetes. We further suggest that cotreatment with QE and RS has the potential for use as an alternative therapeutic strategy for diabetes.

Cardamonin exerts a protective effect against autophagy and apoptosis in the testicles of diabetic male rats through the expression of Nrf2 via p62-mediated Keap-1 degradation

  • Samir, Shereen M.;Elalfy, Mahmoud;El Nashar, Eman Mohamad;Alghamdi, Mansour A.;Hamza, Eman;Serria, Mohamed Saad;Elhadidy, Mona G.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.341-354
    • /
    • 2021
  • Cardamonin (CARD) is a chalconoid with anti-inflammatory and antioxidant properties, and it is present in several plants. We sought to explore whether CARD exerts any positive effects against hyperglycemia-induced testicular dysfunction caused by type 2 diabetes and aimed to identify its possible intracellular pathways. Adult male rats were subdivided into six groups: control, CARD, diabetic (DM), DM + glibenclamide (GLIB), DM + CARD and DM + GLIB + CARD. Type 2 DM induced a significant increase in blood glucose and insulin resistance, along with diminished serum insulin, testosterone and gonadotropins levels, which were associated with the impairment of key testicular androgenic enzymes and cellular redox balance. Administration of CARD at a dose of 80 mg/kg for 4 weeks effectively normalized all of these alterations, and the improvement was confirmed by epididymal sperm analysis. After treatment with CARD, the pathological changes in spermatogenic tubules were markedly improved. Significantly, CARD upregulated testicular glucose transporter-8 (GLUT-8) expression and had inhibitory effects on elevated autophagy markers and caspase-3 immunoreactive cells. Furthermore, our results revealed that CARD was able to attenuate damage via activation of Nrf2 through the p62-dependent degradation of testicular anti-Kelch-like ECH-associated protein-1 (Keap-1). In conclusion, this study suggests that CARD provides protection against diabetic stress-mediated testicular damage. The use of CARD with conventional anti-diabetic therapy was associated with improved efficacy compared with conventional therapy alone.

Anti-Diabetic and Anti-Obese Effects of Ginseng: from Root to Berry

  • Yuan Chun-Su
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.129-144
    • /
    • 2002
  • We investigated anti-hyperglycemic and anti-obese effects of Panax ginseng berry extract and its major constituent, ginsenoside Re, in obese diabetic C57BL/6J ob/ob mice and their lean littermates. Animals received daily intraperitoneal injections of Panax ginseng berry extract for 12 days. On Day 5, 150 mg/kg extract-treated ob/ob mice had significantly lower fasting blood glucose levels compared to vehicle-treated mice $(156{\pm}9.0\;mg/dl\;vs.\;243{\pm}15.8mg/dl,$ P<0.01). On Day 12, the extract-treated ob/ob mice became normoglycemic $(137{\pm}6.7\;mg/dl)$ and had significantly improved glucose tolerance. The overall glucose excursion during the two-hour intraperitoneal glucose tolerance test (IPGTT), calculated as area under the curve (AUC), decreased by $46\%$ (P<0.01) compared to vehicle-treated ob/ob mice. Glucose levels of lean mice were not significantly affected by the extract. The improvement in blood glucose levels in 150 mg/kg extracttreated ob/ob mice was associated with significant reduction in serum insulin levels of fed and fasting mice. Consistent with an improvement in insulin sensitivity, hyperinsulinemic euglycemic clamp study revealed a more than 2-fold increase in the rate of insulin-stimulated glucose disposal in treated ob/ob mice $(112{\pm}19.1\;vs.\;52{\pm}11.8{\mu}mol/kg/min$ for the vehicle group, P<0.01). In addition, 150 mg/kg extract-treated ob/ob mice, but not the lean mice, lost significant weight (from $51.7{\pm}1.9g\;on\;Day\;0\;to\;45.7{\pm}1.2$ on Day 12, P<0.01 compared to vehicle-treated ob/ob mice), associated with a significant reduction in food intake (P<0.05) and a very significant increase in energy expenditure (P<0.01) and body temperature (P<0.01). A 12-day treatment with 150 mg/kg Panax ginseng berry extract also significantly reduced plasma cholesterol levels in ob/ob mice. Additional studies demonstrated that ginsenoside Re, a major constituent of the ginseng berry, but not from the root, plays a significant role in anti-hyperglycemic action. This anti-diabetic effect of ginsenoside Re was not associated with body weight changes, suggesting that other constituents in the extract have distinct pharmacological mechanisms on energy metabolism. The identification of a significant anti-hyperglycemic activity in ginsenoside Re may provide an opportunity to develop a novel class of anti-diabetic agent.

  • PDF

당뇨흰쥐의 국소뇌허혈에 대한 양격산화탕(凉膈散火湯)의 면역조직화학적 연구 (Immunohistochemical Study of Yanggyuksanhwa-tang on Focal Cerebral Ischemia of Diabetic Rats)

  • 부일권;김연섭
    • 동의생리병리학회지
    • /
    • 제21권3호
    • /
    • pp.741-747
    • /
    • 2007
  • This study evaluated neuroprotective effects of Yanggyuksanhwa-tang (YST), which have been known to be efficacy in the treatment of the stroke and diabetes. on focal cerebral ischemia of diabetic rats. On primary experiment, diabetic condition in rats was induced by streptozotocin injection, then, focal cerebral ischemia was induced by the middle cerebral artery occlusion (MCAO) under the diabetic condition. Then neuroprotective effect of YST was observed with changes of infarct size and volume, expressions of c-Fos, Bax, and hypoxia inducible factor (HIF)-1${\alpha}$ in the brain tissues by using 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunohistochemistry. YST treatment showed a significant decrease of infarct size and volume induced by MCAO in diabetic rats. YST treatment showed a significant decrease of c-Fos and Bax positive neurons in cortex penumbra. YST treatment showed a decrease of HIF-l${\alpha}$ positive neurons in cortex penumbra, but it was not significant statistically. These results suggest that YST has effects on neuroprotection against cerebral infarct under diabetic condition. And it is supposed that neuroprotective effect of YST reveals by anti-apoptosis mechanism.

Streptozotocin에 의해 유도된 당뇨 흰쥐의 고혈당과 고지혈에 미치는 오미자 추출물의 효과 (Effects of Schizandra Cchinensis Fruit Extract on the Hyperglycemia and Hyperlipemia in Streptozotocin-induced Diabetic Rats)

  • 채희준;이인순;문혜연
    • KSBB Journal
    • /
    • 제26권2호
    • /
    • pp.126-130
    • /
    • 2011
  • To investigate the antihyperglycemic and antihyperlipemic effect of 80% ethanol extract of Schizandra Chinensis fruit, we induced diabetes in the rats with streptozotocin (STZ) and administered schizandra extract or Acarbose to diabetic rats for 21 days by oral administration. Consequently, the groups treated using schizandra extract decreased blood glucose levels more 39% than no treatment group and the case of Acarbose group was decreased it about 21%. The concentration of cholesterol, triglyceride and LDL-C in blood was also decreased while treating schizandra extract, on the other hand, HDL-C concentration was significantly increased it about 26%. Those results induced that anti-atherogenic index (AAI) in blood was improved more than 82% level like normal condition, especially in treatment of schizandra extract 100 mg. The lipid profiled in feces was likewise showed apparent tendency to decrease and food efficiency ratio of diabetic rats was became higher for treatment with schizandra extract, but Acarbose group had low efficiency in compared with the result of glucose level and lipid profile in blood. As a result, schizandra extract is regard a good medicine for diabetes due to improve physical constitution, blood glucose and lipid level caused hyperglycemia and suggest that schizandra extract has real effects on the diabetes complication as atherosclerosis, coronary heart disease, high blood pressure.

Anti-Oxidant Effects of Highly Bioavailable Curcumin Powder in High-Fat Diet Fed- and Streptozotocin-Induced Type 2 Diabetic Rats

  • Paik, Jean Kyung;Yeo, Hee Kyung;Yun, Jee Hye;Park, Hyun-Ji;Jang, Se-Eun
    • 한국식품영양학회지
    • /
    • 제32권2호
    • /
    • pp.133-137
    • /
    • 2019
  • Curcumin is a hydrophobic polyphenol extracted from turmeric that exhibits a variety of biological functions has albeit with limited efficacy as a functional food material owing to its low absorption when administered orally. The newly developed curcumin powder formulation exhibits improved absorption rate in vivo. This study evaluates the anti-oxidant effects of $Theracurmin^{(R)}$ (TC), which is highly bio-available in curcumin powder. The antioxidant activity of TC was investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferrous reducing antioxidant power (FRAP) assays, NO radical, superoxide radical, $H_2O_2$ scavenging activity, and total antioxidant capacity (TAC). Additionally, we evaluated the antioxidant activity of TC in high-fat diet (HFD)-fed streptozotocin (STZ)-induced Type 2 diabetic rats. As a result of oral administration of TC for 13 weeks in type 2 diabetic rats, the group administration of 2,000 mg/kg significantly increased FRAP, superoxide dismutase (SOD), and reduced the level of glutathione (GSH) in liver tissue 1.9, 1.2, and 1.2-times, respectively. Furthermore, serum TAC levels increased by 1.3-fold after the rats were administered with a dose of 500 mg/kg. These results were consistent with the in vitro assay results. In conclusion, TC exhibited its potential as a functional food material through its antioxidant properties.