• Title/Summary/Keyword: anti-apoptotic effect

Search Result 551, Processing Time 0.03 seconds

Molecular Mechanism of Crocin Induced Caspase Mediated MCF-7 Cell Death: In Vivo Toxicity Profiling and Ex Vivo Macrophage Activation

  • Bakshi, Hamid A;Hakkim, Faruck Lukmanul;Sam, Smitha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1499-1506
    • /
    • 2016
  • Background: Crocus sativus and its major constituent crocin are well established to have anti-cancer properties in breast cancer cells (MCF-7). However the role of C. sativus extract (CSE) and crocin on caspase signaling mediated MCF-7 cell death at molecular level is remains unclear. In this study, we tried to unravel role of CSE and crocin on caspase mediated MCF-7 cells death and their in vivo preclinical toxicity profiling and immune stimulatory effect. Materials and Methods: CSE extract was fractionated by HPLC and crocin was isolated and characterized by NMR, IR, and MS. MCF-7 cells were treated with both CSE and crocin and expression of Bcl-2 and Bax was assessed after 24 and 36 hours. Furthermore, caspase 3, caspase 8 and caspase 9 expression was determined by Western blotting after 24 hours of treatment. DNA fragmentation analysis was performed for genotoxicity of CSE and crocin in MCF-7 cells. The in vivo toxicity profile of CSE (300 mg/kg of b.wt) was investigated in normal Swiss albino mice. In addition, peritoneal macrophages were collected from crocin (1, 1.5 and 2 mg/kg body weight) treated mice and analyzed for ex vivo yeast phagocytosis. Results: Immunoblot analysis revealed that there was time dependent decline in anti-apoptotic Bcl-2 with simultaneous upregulation of Bax in CSE and crocin treated MCF-7 cells. Further CSE and crocin treatment downregulated caspase 8 and 9 and cleaved the caspase 3 after 24 hours. Both CSE and crocin elicited considerable DNA damage in MCF-7 cells at each concentration tested. In vivo toxicity profile by histological studies revealed no observable histopathologic differences in the liver, kidney, spleen, lungs and heart in CSE treated and untreated groups. Crocin treatment elicited significant dose and time dependent ex vivo yeast phagocytosis by peritoneal macrophages. Conclusions: Our study delineated involvement of pro-apoptotic and caspase mediated MCF-7 cell death by CSE and crocin at the molecular level accompanied with extensive DNA damage. Further we found that normal swiss albino mice can tolerate the maximum dose of CSE. Crocin enhanced ex vivo macrophage yeast phagocytic ability.

Anti-tumorigenic Effect of DIM-pPhBr and DIM-pPhF Originating from Cruciferous Vegetables in KB Human Oral Squamous Cell Carcinoma Through Apoptotic Cell Death (사람구강편명상피암세포주인 KB세포에서 십자화과채소 유래물질인 DIM-pPhBr과 DIM-pPhF의 세포사멸유도를 통한 항종양효능에 관한 연구)

  • Cho, Hyun-Tai;Choi, Eun-Sun;Cho, Nam-Pyo;Cho, Sung-Dae
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.398-402
    • /
    • 2011
  • Cruciferous vegetables including diindolylmethane (DIM) have been shown to have anticancer activity. Especially, DIM-pPhBr and DIM-pPhF used in this study was reported to have more effective and less toxic effects than DIM. However, there is no report presenting their anti-tumorigenic activity in oral cancer. In the present study, we examined the effects of DIM-pPhBr and DIM-pPhF on the cell proliferation and apoptosis in KB human oral cancer cells. DIM-pPhBr and DIM-pPhF decreased cell proliferation and induced apoptosis evidenced by western blot analysis, DAPI staining and sub-$G_1$ population. This provides the first evidence that DIM-pPhBr and DIM-pPhF originating from Cruciferous vegetables induce apoptotic cell death in human oral cancer cells to inhibit cancer cell proliferation.

Methanolic Extract from Sea Cucumber, Holothuria scabra, Induces Apoptosis and Suppresses Metastasis of PC3 Prostate Cancer Cells Modulated by MAPK Signaling Pathway

  • Pranweerapaiboon, Kanta;Noonong, Kunwadee;Apisawetakan, Somjai;Sobhon, Prasert;Chaithirayanon, Kulathida
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.775-783
    • /
    • 2021
  • Sea cucumber, Holothuria scabra, is a well-known traditional Asian medicine that has been used for suppressing inflammation, promoting wound healing, and improving immunity. Moreover, previous studies demonstrated that the extract from H. scabra contains many bioactive compounds with potent inhibitory effect on tumor cell survival and progression. However, the effect of the methanolic extract from the body wall of H. scabra (BWMT) on human prostate cancer cells has not yet been investigated. In this study, we aimed to investigate the effects and underlying mechanism of BWMT on prostate cancer cell viability and metastasis. BWMT was obtained by maceration with methanol. The effect of BWMT on cell viability was assessed by MTT and colony formation assays. The intracellular ROS accumulation was evaluated using a DCFH-DA fluorescence probe. Hoechst 33342 staining and Annexin V-FITC/PI staining were used to examine the apoptotic-inducing effect of the extract. A transwell migration assay was performed to determine the anti-metastasis effect. BWMT significantly reduced cell viability and triggered cellular apoptosis by accumulating intracellular ROS resulting in the upregulation of JNK and p38 signaling pathways. In addition, BWMT also inhibited the invasion of PC3 cells by downregulating MMP-2/-9 expression via the ERK pathway. Consequently, our study provides BWMT from H. scabra as a putative therapeutic agent that could be applicable against prostate cancer progression.

BCL2L10 Protein Induces Apoptosis in KGN-Human Granulosa Cells (KGN(난소과립세포)에서 BCL2L10 단백질의 세포사멸 유도 기능 연구)

  • Kim, Jae-Hong;Lee, Kyung-Ah;Bae, Jee-Hyeon
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • BCL-2 family essential proteins to play a pivotal role to perform in apoptosis signaling pathways and essential proteins for the regulation of cell death. BCL2L10 protein is a member of BCL-2 family and it regulates both anti-apoptotic and pro-apoptotic function of specific tissue or cell line. BCL2L10 of function and expression is not reported in ovary cell lines. In this study we reported that BCL2L10 were significant expression of KGN cell line. Ectopic expression of BCL2L10 induced cell death, and its cells killing effect was blocked by pan-caspase inhibitor of the Z-VAD-fmk. Ectopic expression of BCL2L10 protein led to the activation of caspase 9 and caspase 3, suggesting apoptotic cell death, and confocal microscopic analyses showed that BCL2L10 was partially localized in mitochondria. Thus, we provide a novel function of BCL2L10 in KGN cells, which was involved in the intrinsic cell death pathway.

Effect of Bcl-2 Inhibitor Treatment on Embryo Developmental Competence, Apoptosis and ER-stress in Pigs (Bcl-2의 저해제 처리에 따른 돼지 수정란의 배발달 능력, 세포 사멸 및 소포체 스트레스 양상)

  • Hong, Joo-Hee;Min, Sung-Hun;Lee, Enok;Son, Hyeong-Hoon;Yeon, Ji-Yeong;Park, Humdai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.167-172
    • /
    • 2012
  • The key regulators of apoptosis are the interacting protein of the Bcl-2 family. Bcl-2, an important member of this family, blocks cytochrome C release by sequestering pro-apoptotic BH3-only proteins such as Bid, Bad, Bax and Bim. The pro-survival family members (Bcl-2, Bcl-XL, Bcl-W) are critical for cell survival, since loss of any of them causes cell death in certain cell type. However, its role during early porcine embryonic development is not sufficient. In this study, we traced the effects of Bcl-2 inhibitor, ABT-737, on early porcine embryonic development. We also investigated several indicators of developmental potential, including gene expression (apoptosis-related genes) and apoptosis, which are affected by ABT-737. Porcine embryos were cultured in the PZM-3 medium with or without ABT-737 for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without ABT-737 ($14.7{\pm}3.0$ vs $30.3{\pm}4.8%$, p<0.05). TUNEL assay showed that the number of containing fragmented DNA at the blastocyst stage increased in the ABT-737 treated group compared with control (4.7 vs 3.7, p<0.05). The mRNA expression of the pro-apoptotic gene Bax increased in ABT-737 treated group (p<0.05), whereas expressions of the anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-XL, Bcl-W) decreased (p<0.05). Also, expressions of the ER stress indicator genes (GRP78, XBP-1 and sXBP-1) increased in ABT-737 treated group (p<0.05). In conclusion, Bcl-2 is closely associated with of apoptosis- and ER stress-related genes expressions and developmental potential in pig embryos.

Mechanism of Apoptosis Induced by Spermine in MCF-7 Breast Cancer Cells (MCF-7 유방암 세포주에 있어서 spermine에 의해 유도된 세포사멸 기작)

  • Jang, Eun-Seong;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1177-1185
    • /
    • 2008
  • In the present work, we show that spermine (spm)-induced cytotoxicity is due to the mitochondrial-dependent pathway triggered by the intracellular $Ca^{2+}$ increase in MCF-7 human breast cancer cells. Spm induced the intracellular $Ca^{2+}$ increase in a dose-dependent manner in the medium containing 1.5 mM $Ca^{2+}$. Even in the $Ca^{2+}$-free medium, spm could induce a minor $Ca^{2+}$ increase in a dose-dependent fashion, suggesting a probable leak from the internal storage. The cytotoxic effect of $Ca^{2+}$ could be further proved by using either BAPTA or ionophore. Spm-induced $Ca^{2+}$ increase led to the release of cytochrome c from mitochondria into the cytosol and the change of mitochondrial membrane potential. In MCF-7 cells, caspase-7 plays a key role in the downstream of apoptosis because caspase-3 is absent. In the cells treated with spm, the cleavage of caspase-7 and -12 was increased almost two-fold. The level of anti-apoptotic Bcl-2 protein decreased to 35% of the control; however, the cells showed increased expression of pro-apoptotic Bax protein about two-fold in response to spm. These results imply that the apoptotic signaling pathway activated by spm is likely to be mediated via the mitochondrial-dependent pathway.

The Effects of Fucoidan on the Activation of Macrophage and Anticancer in Gastric Cancer Cell (Fucoidan의 면역세포 활성 및 위암 세포주에서의 항암효과)

  • An, In-Jung;Cho, Sung-Dae;Kwon, Jung-Ki;Kim, Hye-Ri;Yu, Hyun-Ju;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.406-414
    • /
    • 2012
  • This study was designed to investigate the effect of fucoidan on the activation of macrophage and on induction of apoptosis in AGS cell. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cell. Treatment with fucoidan significantly increased production of NO and TNF-${\alpha}$, indicating activation of macrophages. The result of MTT assay shows that cell viability was significantly decreased in a dose and time-dependent manner. Fucoidan increased to enhance mitochondrial membrane permeability, as well as the cytochrome c release from the mitochondria. Fucoidan decreased Bcl-2 and XIAP expression, whereas the expression of Bax was increased in a time-dependent manner compared to the control. In addition, the active forms of caspase-9 were increased, and the inactivation of Akt was decreased in a time-dependent manner. Caspase inhibitor, z-VAD-FMK, canceled the apoptosis of fucoidan, expression of Bax and caspase-9 were decrease. These results indicate that fucoidan induces activation of macrophage and apoptosis through activation of caspase on AGS cell.

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Effect of Anti-Alzheimer's disease by Jeonmaedan in CT105-overexpressed SK-N-SH cell lines (CT105로 유도된 인간신경아세포종 세포주에서 전매단의 항치매 효과)

  • Song Ho-Sang;Park Chi-Sang;Park Chang-Gook
    • Herbal Formula Science
    • /
    • v.11 no.2
    • /
    • pp.95-110
    • /
    • 2003
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the biggest problem in public health service. Although a variety of oriental prescriptions in study Jeonmaedan have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet fully elucidated. It has been widely believed that A${\beta}$ peptide devided from APP causes apoptotic neurotoxicity in AD brain. However, recent evidence suggests that CTl05(carboxy terminal 105 amino acid peptide fragment of APP) may be an important factor causing neurotoxicity in AD. In addition, AD is one of brain degeneration disease. So we studied on herbal medicine that have a relation of brain degeneration. In Oriental Medicine, Jeonmaedan has been used for disease in relation to brain degeneration. As the result of this study, in Jeonmaedan the apoptosis in the nervous system is inhibited, the repair against the degerneration of SK-N-SH cell lines by CT105 expression is promoted. So Jeonmaedan may be beneficial for the treatment of AD.

  • PDF

Amygdalin Extract from Armeniacae Semen Induces Apoptosis through Bax-dependent Caspase-3 Activation in Human Cervical Cancer Cell Line ME-180

  • Choi Seung Peom;Song Yun Kyung;Kim Kyung Jun;Lim Hyung Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.130-142
    • /
    • 2005
  • Objectives: Amygdalin is known to be a natural compound which has antitussive and anticancer activities. Amygdalin is abundant in the seeds of bitter almond and apricots of the Prunus genus, and other rosaceous plants. We investigated whether amygdalin induces apoptosis. Materials and Methods : 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)assay, terminal deoxynuclotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) assay, 4,6-diamidino-2-phenylindole (DAFI) staining, flow cytometric analysis, DNA fragmentation assay, western blot, and caspase-3 enzyme assay were performed on ME-180 cervical cancer cells treated with amygdalin. Results: Through morphological and biochemical analyses, it was demonstrated that ME-180 cells treated with amygdalin exhibit several apoptotic features. It was shown that amygdalin induces increases in levels of Bax and caspase-3 and a decrease in Bcl-2 expression. Conclusions: These results suggest the possibility that amygdalin exerts an anti-tumor effect on human cervical cancer.

  • PDF