• Title/Summary/Keyword: anti-Archimedean

Search Result 3, Processing Time 0.017 seconds

A Note on S-Noetherian Domains

  • LIM, JUNG WOOK
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.507-514
    • /
    • 2015
  • Let D be an integral domain, t be the so-called t-operation on D, and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also investigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring $D[X]_N$ is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring $D[X]_{N_v}$ is a t-locally S-Noetherian domain.

ALMOST MULTIPLICATIVE SETS

  • BAEK, HYUNG TAE;LIM, JUNG WOOK
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.259-266
    • /
    • 2021
  • Let R be a commutative ring with identity and let S be a nonempty subset of R. We define S to be an almost multiplicative subset of R if for each a, b ∈ S, there exist integers m, n ≥ 1 such that ambn ∈ S. In this article, we study some utilization of almost multiplicative subsets.

THE S-FINITENESS ON QUOTIENT RINGS OF A POLYNOMIAL RING

  • LIM, JUNG WOOK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.617-622
    • /
    • 2021
  • Let R be a commutative ring with identity, R[X] the polynomial ring over R and S a multiplicative subset of R. Let U = {f ∈ R[X] | f is monic} and let N = {f ∈ R[X] | c(f) = R}. In this paper, we show that if S is an anti-Archimedean subset of R, then R is an S-Noetherian ring if and only if R[X]U is an S-Noetherian ring, if and only if R[X]N is an S-Noetherian ring. We also prove that if R is an integral domain and R[X]U is an S-principal ideal domain, then R is an S-principal ideal domain.