• Title/Summary/Keyword: anti-Alzheimer's disease

Search Result 189, Processing Time 0.033 seconds

Cholinesterase Inhibitory Activities of Alkaloids from Corydalis Tuber

  • Hung, Tran Manh;Thuong, Phuong Thien;Nhan, Nguyen Trung;Mai, Nguyen Thi Thanh;Quan, Tran Le;Choi, Jae-Sue;Woo, Mi-Hee;Min, Byung-Sun;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.17 no.2
    • /
    • pp.108-112
    • /
    • 2011
  • Several isoquinoline alkaloids (1 - 18), which have basic chemical structures as protoberberine and aporphine skeletones, were evaluated for their inhibitory activities on AChE and BuChE. Among them, compounds 3, 4, 6, 8 and 12 showed the potent AchE activity with the $IC_{50}$ values ranging from $10.2{\pm}0.5\;{\mu}M$ to $24.5{\pm}1.6\;{\mu}M$, meanwhile, compound 14 - 17 exhibited strong inhibitory activity with $IC_{50}$ values from $2.1{\pm}0.2$ to $5.5{\pm}0.3\;{\mu}M$. Compounds 14 - 17 exhibited selective inhibition for AChE compared with BuChE. The isoquinoline alkaloid possesses aromatic methylenedioxy groups and quaternary nitrogen atoms are crucial for the anti-cholinesterase inhibitory activity.

Composition and Anti-cholinesterase Activity of the Essential Oil Obtained from Korean Elsholtzia ciliata (한국산 향유로부터 얻은 정유의 조성과 콜린에스테라제 억제활성)

  • Song, Byong-Min;Choi, Jae Sue;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.226-231
    • /
    • 2016
  • The present GC-MS analysis elucidated the composition of the essential oil obtained from the herb of Elsholtzia ciliata(Lamiaceae). Overall, the content of monoterpenes was higher than that of sesquiterpenes. Monoterpenes rich in this oil were carvone (peak area, 26.180%), camphor (2.304%), borneol (9.974%), dihydrocarveol (3.296%), ${\alpha}$-citral (=geranial, 4.025%), geranic acid (2.961%), while sesquiterpenes occupying relatively higher percentage were ${\alpha}$-humulene (0.918%), (-)-spathulenol (0.974%), ${\alpha}$-caryophyllene oxide (2.014%), globulol (1.362%), ${\beta}$-caryophyllene oxide (0.750%). The components characterizing this oil were 1-octen-3-ol, acetophenone, and butylated hydroxytoluene. The $IC_{50}$ of this oil on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were $42.37{\mu}g/ml$ and $121.34{\mu}g/ml$, respectively, suggesting that the essential oil of E. ciliata may be active on the memory loss of patients suffering from Alzheimer's disease.

Neuroprotective Effects of Scopoletin on Neuro-damage caused by Alcohol in Primary Hippocampal Neurons

  • Lee, Jina;Cho, Hyun-Jeong
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.57-65
    • /
    • 2020
  • Excessive drinking of alcohol is known to be one of the main causes of various neurological diseases, such as Alzheimer's disease. Scopoletin is known to have anti-inflammatory and antioxidative properties, and to protect nerve cells. This study examined whether scopoletin inhibits the alcohol-induced apoptosis of primary hippocampal neurons, and how scopoletin regulates several factors associated with the caspase-mediated pathway. To achieve this, the cell viability and apoptosis rate of primary hippocampal neurons were measured by Cell Counting Kit-8 and flow cytometry, respectively. Apoptosis-related protein expressions (Bax, Bid, caspase-3, caspase-9, and Poly (ADP-ribose) polymerase (PARP)) were analyzed by Western blotting, and the ANOVA method was used to confirm the significance of the measured results. As a result, scopoletin inhibited the expressions of alcohol-induced apoptosis and apoptosis-related proteins in primary hippocampal neurons. These results suggest that down-regulation of Bid, Bax, and cleaved caspase-9 expression induced by scopoletin down-regulates the expression of cleaved caspase-3, inhibits the expression of cleaved PARP, and finally, inhibits mitochondrial apoptotic pathways. The study suggests that scopoletin is worth developing as a candidate for neuroprotective agent.

Anti-thrombus Effects of Isoscopoletin by Regulating Cyclic Nucleotides on U46619-induced Platelets (U46619 유도의 혈소판에서 Cyclic Nucleotides 조절을 통한 Isoscopoletin의 혈전생성 억제효과)

  • Lee, Dong-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.26-33
    • /
    • 2021
  • During blood vessel damage, an essential step in the hemostatic process is platelet activation. However, it is important to properly control platelet activation, as various cardiovascular diseases, such as stroke, atherosclerosis, and myocardial infarction, are also caused by excessive platelet activation. Found primarily in the roots of plants of the genus Artemisia or Scopolia, isoscopoletin has been studied to demonstrate its potential pharmacological effects against Alzheimer's disease and anticancer, but the mechanisms and roles involved in thrombus formation and platelet aggregation are insufficient. This study investigated the effect of isoscopoletin on U46619-induced human platelet activation. As a result, isoscopoletin significantly increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) dose-dependently. In addition, isoscopoletin significantly phosphorylated inositol 1, 4, 5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphprotein (VASP), which are known substrates for cAMP-dependent kinases and cGMP-dependent kinases. Phosphorylated IP3R by isoscopoletin inhibited Ca2+ mobilization from the dense tubular system Ca2+ channels to cytosol, and phosphorylated VASP was involved in the inhibition of fibrinogen binding through αIIb/β3 inactivation in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clotting production. Therefore, this study suggests that isoscopoletin has a potent antiplatelet effect and may be helpful for platelet-related thrombotic diseases.

Inhibitory Effects of Forsythia velutina and its Chemical Constituents on LPS-induced Nitric Oxide Production in BV2 Microglial Cells

  • Kim, Na-Yeon;Ko, Min Sung;Lee, Chung Hyun;Lee, Taek Joo;Hwang, Kwang-Woo;Park, So-Young
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • Neuroinflammation is known to be associated with brain injury in Alzheimer's disease (AD), and the inhibition of microglial activation, a key player in inflammatory response, is considerd as important target for AD. In this study, the ethanol extract of aerial parts of Forsythia velutina Nakai, a Korean native species, significantly inhibited nitric oxide (NO) production in LPS-stimulated BV2 microglial cells. Thus, the active principles in F. velutina aerial parts were isolated based on activity-guided isolation method. As a result, six compounds were isolated and their structures were elucidated based on NMR data and the comparison with the relevant references as arctigenin (1), matairesinol (2), rengyolone (3), ursolic acid (4), secoisolariciresinol (5), and arctiin (6). Among them, four compounds including arctigenin (1), matairesinol (2), secoisolariciresinol (5), and arctiin (6) significantly inhibited NO production in a dose-dependent manner. In particular, matairesinol (2) and secoisolariciresinol (5) reduced 60% of NO production compared to LPS-treated group. This inhibitory effects of matairesinol (2) and secoisolariciresinol (5) were accompanied with the reduced expression levels of iNOS and COX-2. These results suggest that the extract of F. velutina and its active compounds could be beneficial for neuroinflammatory diseases including AD.

Anti-platelet effects of Artesunate through Regulation of Cyclic Nucleotide on Collagen-induced Human Platelets

  • Dong-Ha Lee
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Discovery of new substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artesunate is a compound from plant roots of Artemisia or Scopolia, and its effects have shown to be promising in areas of anticancer and Alzheimer's disease. However, the role and mechanisms by which artesunate affects the aggregation of platelets, and the formation of a thrombus are currently not understood. This study examined the ways artesunate affects platelets activation and thrombus formation induced by collagen. As a result, cAMP and cGMP production were increased significantly by artesunate relative to the doses, as well as phosphorylated VASP and IP3R, substrates to cAMP-dependent kinase and cGMP-dependent kinase, in a significant manner. The Ca2+ normally mobilized from the dense tubular system was inhibited due to IP3R, phosphorylation from artesunate, and phosphorylated VASP aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. Finally, artesunate inhibited thrombin-induced thrombus formation. Therefore, we suggest that artesunate has importance with cardiovascular diseases stemming from the abnormal platelets activation and thrombus formation by acting as an effective prophylactic and therapeutic agent.

Effects of Sotosaja-hwan on the Generation of ROS, RNS, and on the Expression of NF-${\kappa}B$-dependent Proteins in ob/ob Mouse (소도사자환이 ob/ob mouse에서 ROS/ RNS 생성 억제 및 NF-${\kappa}B$ 의존성 단백질에 미치는 영향)

  • Bang, Yong-Suk;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.51-63
    • /
    • 2009
  • Objectives: Peroxynitrite ($ONOO^-$), superoxide anion radical (${\cdot}{O_2}^-$ and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging processes, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer, diabetes, obesity and atherosclerosis. The aim of this study was to investigate the $ONOO^-$, NO, ${\cdot}{O_2}^-$ scavenging and NF-${\kappa}B$ related anti-inflammatory activities of Sotosaja-hwan in ob/ob mice. Methods: Mice were grouped and treated for 5 weeks as follows. Both the normal lean (C57/BL6J black mice) and control obese (ob/ob mice) groups have received standard chow. The experimental groups were fed with a diet of chow supplemented with 30 and 90 mg Sotosaja-hwan per 1 kg of body weight for 14 days. For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Western blotting was performed using anti-phospho-$I{\kappa}B$-${\alpha}$, anti-IKK-${\alpha}$, anti-NF-${\kappa}B$ (p50, p65), anti-COX-2, anti-iNOS, anti-YCAM-1 and anti-MMP-9 antibodies, respectively. Results: Sotosaja-hwan inhibited the generation of $ONOO^-$, NO and ${\cdot}{O_2}^-$ in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondrial fraction in vitro. The generation of $ONOO^-$, NO, ${\cdot}{O_2}^-$ and PGE2 were inhibited in the Sotosaja-hwan-administered ob/ob mice groups. The GSH/GSSG ratio was decreased in the ob/ob mice, whereas the ratio was improved in the Sotosaja-hwan-administered groups. Sotosaja-hwan inhibited the protein expression levels of phospho-$I{\kappa}B$-${\alpha}$, IKK-${\alpha}$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, YCAM-1 and MMP-9 genes. Conclusions: These results suggest that Sotosaja-hwan is an effective $ONOO^-$, ${\cdot}{O_2}^-$ and NO scavenger and has NF-kB related anti-inflammatory activity in ob/ob mice. Therefore, Sotosaja-hwan might be a potential therapeutic drug against the inflammation process and inflammation-related diseases.

  • PDF

Cytoprotective Effects of Docosyl Cafferate against tBHP-Induced Oxidative Stress in SH-SY5Y Human Neuroblastoma Cells

  • Choi, Yong-Jun;Kwak, Eun-Bee;Lee, Jae-Won;Lee, Yong-Suk;Cheong, Il-Young;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Myong-Jo;Kwon, Yong-Soo;Chun, Wan-Joo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.195-200
    • /
    • 2011
  • Neuronal cell death is a common characteristic feature of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases. In the present study, docosyl cafferate (DC), a derivative of caffeic acid, was isolated from Rhus verniciflua and its protective effects on tBHP-induced neuronal cell death were examined in SH-SY5Y human neuroblastoma cells. Pretreatment of DC significantly attenuated tBHP-induced neuronal cell death in a concentration-dependent manner. DC also significantly suppressed tBHP-induced caspase-3 activation. In addition, DC restored tBHP-induced depletion of intracellular Bcl-2, an anti-apoptotic member of the Bcl-2 family. Furthermore, DC significantly suppressed tBHP-induced degradation of IKB, which retains $NF-{\kappa}B$ in the cytoplasm, resulting in the suppression of nuclear translocation of $NF-{\kappa}B$ and its subsequent activation. Taken together, the results clearly demonstrate that DC exerts its neuroprotective activity against tBHP-induced oxidative stress through the suppression of nuclear translocation of $NF-{\kappa}B$.

Effect of Phlorotannins Isolated from the Ethyl Acetate Fraction of Ecklonia stolonifera on Peritoneal Macrophage Polarization (복강대식세포의 염증성 표현형에 대한 곰피(Ecklonia stolonifera) 유래 Phlorotannins의 효과)

  • Choi, Min-Woo;Choi, Jun-Hyeong;Kim, Hyeung-Rak;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.439-446
    • /
    • 2015
  • Inflammation is a protective response to infection or injury. However, prolonged inflammation can contribute to the pathogenesis of many diseases, such as cancer, diabetes, arthritis, atherosclerosis, and Alzheimer's disease. Recent studies have shown that activated macrophages, inflammatory effector cells, can react to tissue insults in a polarized manner, in which their phenotypes are polarized into two major subtypes, categorized as M1 or M2. Classical M1 activation involves the production of pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-${\alpha}$, and free radicals, while M2 or alternative activation is an anti-inflammatory phenotype involved in homeostatic processes, such as wound healing, debris scavenging, and the dampening of inflammation via the production of very low levels of pro-inflammatory cytokines and high levels of anti-inflammatory mediators, including IL-10. As part of our ongoing effort to isolate anti-inflammatory compounds from seaweeds, we investigated the effects of phlorotannins isolated from the brown alga Ecklonia stolonifera on macrophage polarization. Mouse peritoneal macrophages were treated with various concentrations of the extracts, and real-time RT-PCR analyses were performed to examine the expression of polarization markers: IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ for M1 and arginase-1, peroxisome proliferator-activated receptor (PPAR)-${\gamma}$, found inflammatory zone-1 (Fizz-1), chitinase 3-like 3 (Ym1), and$Kr{\ddot{u}}ppel$-like factor 4 (Klf-4) for M2. The pretreatment of cells with eckol, dieckol, and phlorofucofuroeckol-A (PFF-A), isolated from the ethyl acetate fraction of E. stolonifera ethanolic extract, potentiated the anti-inflammatory M2 phenotype of the macrophages. These results indicate that phlorotannins derived from E. stolonifera can be used to enrich macrophages with markers of the M2 anti-inflammatory state.

Antibody Functionalized UiO-66-(COOH)2 Amplified Surface Plasmon Resonance Analysis Method for fM Oxytocin (펨토몰 농도의 옥시토신 검출을 위한 항체 기능성 UiO-66-(COOH)2 증폭형 표면 플라즈몬 공명 분석법 개발)

  • Myungseob Lee;Ha-Young Nam;Su Yeon Park;Sung Hwa Jhung;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.335-340
    • /
    • 2024
  • In this paper, we synthesized organic and inorganic hybrid materials to introduce antibody functionality to UIO-66 and incorporated them into a surface plasmon resonance (SPR) assay to enhance the sensitivity of detecting small molecules such as oxytocin. A biological marker peptide called oxytocin may help in the diagnosis of heart failure, Alzheimer's disease, and cancer. To detect oxytocin at concentrations as low as a few femtomole (fM), we developed a surface sandwich assay utilizing a pair of oxytocin-specific antibodies for enhancing selectivity and one of metal organic frameworks [e.g., UiO-66-(COOH)2] possessing high porosity and surface-area as a signal amplifier. Initially, real-time SPR assays were used to confirm that each selected oxytocin-specific antibody binds strongly to oxytocin and to different binding sites on oxytocin. One of these antibodies (e.g., anti-OXT[OTI5G4]) was immobilized on the surface of a thin gold chip. Upon sequential injecting of oxytocin and the other antibody (e.g., anti-OXT[4G11]) conjugated to UiO-66-(COOH)2 onto the surface to form the surface sandwich complex of anti-OXT[OTI5G4]/oxytocin/UiO-66-(COOH)2-anti-OXT[4G11]), SPR changes, which varied with oxytocin concentration, were then measured in real time. The results demonstrated that sensitivity was amplified by over a million-fold compared to assays without UiO-66-(COOH)2, enabling oxytocin detection down to approximately 10 fM.