• Title/Summary/Keyword: anthropogenic sources

Search Result 244, Processing Time 0.024 seconds

[ $CO_2$ ] Sequestration in Geological Structures in the Maritime Area: A Preliminary Review (이산화탄소 해저 지질 구조 격리: 기술 현황과 제도 예비검토)

  • Hong, Gi-Hoon;Park, Chan-Ho;Kim, Han-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.203-212
    • /
    • 2005
  • Anthropogenic emissions of greenhouse gases, particularly carbon dioxide($CO_2$) which arises mainly as wastes from the fossil fuel burning processes, are causing global warming. The effects of global warming become increasingly felt all over the world including sea level rise and extreme weather. The more direct consequences of the elevated atmospheric $CO_2$ on the ocean is the acidification of the surface ocean which brings a far reaching adverse impact on the life at sea and probably on the whole ecosystem of the planet. Improvement in energy efficiency and use of alternative energy sources are being made to reduce $CO_2$ emissions. However, a rapid transition to alternatives seems unachievable within a few decades due to the constraints on the associated technology and socio-economic factors in the world, since fossil fuels make up approximately 85% of the world's commercial energy demands. It has now been recognized that capture and geological sequestration of $CO_2$ could significantly reduce its emissions from fossil fuel utilization and therefore provides the means to rapidly achieve large reductions in $CO_2$ emissions(excerpts from London Convention, LC/SG 28, 2005). In Korea, well-developed sedimentary basins are spread over the vast continental shelf and slope regions, whereas, the land is densely populated and limited in area. Consequently, the offshore area is preferred to the land for the sites for geological sequestration. The utilization of the offshore area, however, may be subject to international agreements including London Convention. In this paper, the recent trends in technologies and regulations for $CO_2$ capture and geological sequestration are described to encourage its applications in Korea.

  • PDF

Ionic composition comparison of atmospheric aerosols at coastal and mountainous sites of jeju island (제주도 해안과 산간 지역 대기 에어러솔의 이온조성 비교)

  • Hong, Sang-Bum;Jung, Duk-Sang;Lee, Soon-Bong;Lee, Dong-Eun;Shin, Seung-Hee;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.24-37
    • /
    • 2011
  • The ionic compositions of atmospheric aerosols were investigated and characterized in coastal and mountainous sites of Jeju Island, which were Gosan and Mt. Halla-1100 sites respectively. It was found that the concentrations of nss-$SO_4^{2-}$ (non-sea salt sulfate) and $NH_4^+$ at two measurement sites were almost similar and they showed high concentrations in June at the same time. The concentration of soil-originated nss-$Ca^{2+}$ (non-sea salt calcium) was generally associated with that of anthropogenic $NO_3^-$ and its concentration was increased during spring season. From the comparison of time-series variation and regression analysis of ionic species between two measurement sites, TSP (total suspended particulate) in Gosan site was directly influenced by sea salt particles and the concentration levels of nss-$SO_4^{2-}$, $NH_4^+$, nss-$Ca^{2+}$, $K^+$, and $NO_3^-$ were mainly related with long-range transported air pollutants rather than local pollution sources.

Distribution and Pollution Status of Organic Matter and Heavy Metals in Surface Sediment Around Goseong Bay, a Shellfish Farming Area, Korea (패류양식해역인 고성만 주변 표층 퇴적물의 유기물과 중금속 분포 및 오염현황)

  • Lee, Garam;Hwang, Dong-Woon;Hwang, Hyunjin;Park, Jung-Hyun;Kim, Hyung-Chul;Kwon, Jung-No
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.699-709
    • /
    • 2017
  • We measured the grain size, total organic carbon (TOC), total nitrogen (TN), and heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) in order to understand the spatial distribution and pollution level of organic matter and metals in surface sediment around Goseong Bay, a shellfish farming area, Korea. The surface sediments were composed of finer sediments such as mud and clay. The concentration of TOC, TN, and heavy metals were much higher in the innermost bay than in the mouth and outside of bay. The spatial distribution of organic matter and heavy metals and C/N ratio (5-10) in sediment showed that the organic matter and heavy metals in sediment of the study region were significantly influenced by oceanic origin organic matter and anthropogenic sources, respectively. Based on the results of four assessment techniques (sediment quality guideline, geoaccumulation index, pollution load index, ecological risk index), the sediments around the Goseong Bay were a little polluted for heavy metals and the high metal concentrations in the northern region of bay could adverse impact on benthic organisms in sediment. Thus, the systematic management plan for the improvement of water and sediment environment and the concentrated monitoring of pollutants for sustainable aquaculture and seafood safety around Goseong Bay are necessary in the future.

Heavy Metals in Road Deposited Sediments and Control of Them in Urban Areas: A Review (문헌고찰에 의한 도시 지역 도로퇴적물의 중금속 특성 및 적정 관리방안)

  • Kim, Do Gun
    • Land and Housing Review
    • /
    • v.13 no.3
    • /
    • pp.125-140
    • /
    • 2022
  • Road Deposited Sediment (RDS) is the solids formed from the wear of road, wear of vehicles, exhausts, and the input of the emissions from various sources out of the roads. RDS is seriously polluted by organic matter, nutrients, and metals. RDS plays an important role as the sink and the transport medium of the associated pollutants because RDS can be carried to the adjacent water system via stormwater runoff. In this regard, the heavy metals in RDS were investigated based on the publications. The contents of the metals in RDS were highly variable. The concentration of Cr, Ni, Cu, Fe, Zn, As, Cd, and Pb in urban RDS in various regions was in a range of 3.16-3,410, 1.15-1,382, 20.2-9,069, 2,980-124,853, 81-2,550, 2.3-214, 0.19-21.3, and 15.21-1,125 mg/kg, respectively. The anthropogenic enrichment of the metals in RDS was confirmed by the high concentration of Cu, Zn, Cd, and Pb. The contents of the metals were higher in industrial and traffic areas than in residential areas, while they were generally increased with decreasing particle size. It is believed that this study's results would contribute to quantifying the metals' load via RDS and establishing control strategies.

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine (폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사)

  • Han-Gyum Kim;Bum-Jun Kim;Myoung-Soo Ko
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.717-726
    • /
    • 2022
  • This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

Verification and Estimation of the Contributed Concentration of CH4 Emissions Using the WRF-CMAQ Model in Korea (WRF-CMAQ 모델을 이용한 한반도 CH4 배출의 기여농도 추정 및 검증)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Hong, Sungwook;Chang, Eunmi
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2013
  • The purpose of this study was to estimate the contributed concentration of each emission source to $CH_4$ by verifying the simulated concentration of $CH_4$ in the Korean peninsula, and then to compare the $CH_4$ emission used to the $CH_4$ simulation with that of a box model. We simulated the Weather Research Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model to estimate the mean concentration of $CH_4$ during the period of April 1 to 22 August 2010 in the Korean peninsula. The $CH_4$ emissions within the model were adopted by the anthropogenic emission inventory of both the EDGAR of the global emissions and the GHG-CAPSS of the green house gases in Korea, and by the global biogenic emission inventory of the MEGAN. These $CH_4$ emission data were validated by comparing the $CH_4$ modeling data with the concentration data measured at two different location, Ulnungdo and Anmyeondo in Korea. The contributed concentration of $CH_4$ estimated from the domestic emission sources in verification of the $CH_4$ modeling at Ulnungdo was represented in about 20%, which originated from $CH_4$ sources such as stock farm products (8%), energy contribution and industrial processes (6%), wastes (5%), and biogenesis and landuse (1%) in the Korean peninsula. In addition, one that transported from China was about 9%, and the background concentration of $CH_4$ was shown in about 70%. Furthermore, the $CH_4$ emission estimated from a box model was similar to that of the WRF-CMAQ model.

Composition and emission characteristics of fine particulate matters at the 1100 Site of Mt. Halla during 2011-2012 (한라산 1100고지 대기 미세먼지의 조성 및 배출 특성: 2011~2012년 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Ko, Hee-Jung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.209-218
    • /
    • 2016
  • PM10 and PM2.5 samples were collected at the 1100 site of Mt. Halla in Jeju Island during 2011~2012, and their ionic and elemental species were analyzed, in order to investigate the characteristics of emission sources as well as aerosol compositions. The mass concentrations of PM10 and PM2.5 were 22.0±13.1 µg/m3 and 11.3±6.1 µg/m3, respectively, showing 2.4~2.6 times lower than those of the capital city area of Korea. The composition ratios of major secondary pollutants (nss-SO42−, NH4+, and NO3) were the highest as 85.5 % for PM10 and 91.3 % for PM2.5, and followed by the order of marine (Na+, Cl, and Mg2+), organic acid (HCOO and CH3COO), and soil (nss-Ca2+) sources. Among the elemental species in PM10, soil-originated components (Al, Fe, and Ca) were consisted of 50.9 %, which was higher proportion than marine and anthropogenic elements. The acidification of the fine particulate matters was found to be influenced mostly by sulfuric and nitric acids, and these acids were mainly neutralized by calcium carbonate in PM10 and by ammonia in PM2.5. The clustered back trajectories showed that 47 % of total air mass inflows was from the China, and the concentrations of NO3 and nss-Ca2+ were especially high corresponding to the inflows.

Wet Deposition of Heavy Metals during Farming Season in Taean, Korea (태안지역 강우의 중금속 함량 평가)

  • Jung, Goo-Bok;Kim, Min-Kyeong;Lee, Jong-Sik;Kim, Won-Il;Kim, Gun-Yeob;Ko, Byong-Gu;Kang, Kee-Kyung;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.153-159
    • /
    • 2011
  • BACKGROUND: This experiment was conducted to investigate the distribution and burden characteristics of heavy metal in the rainwater sampled at Taean area, in the middle part of Korea, from April 2002 to October 2003. METHODS AND RESULTS: The relationship between concentration of heavy metal and other chemical properties in the rainwaters was also evaluated. Chemical properties in the rainwater were various differences with raining periods and years. It appeared that a weighted average pH values of rainwater was ranged from 5.0 to 5.1. Heavy metal concentrations in the rainwater were ranked as Pb > Zn > Cu > Ni > As > Cr > Cd. As compared with heavy metal concentrations of rainwater in 2002, Cu, Pb, and Zn were higher than other elements in 2003. There were positive correlation between major ionic components, such as ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, ${SO_4}^{2-}$ and ${NO_3}^-$, and As, Cd, Zn, Cr, and Ni concentrations in rainwater. For heavy metal distribution of rainwater, the order of average enrichment factor was Cd > Pb > As > Cu > Zn > Ni > Cr, and these were relatively higher than the natural components such as Fe, Mg and Ca. The monthly enrichment factor were relatively high, from August to October at Taean. The monthly amount of heavy metal precipitation was high in the rainy season from July to August because of great influence of rainfall. CONCLUSION(s): The results of this study suggest that the heavy metals(Cd, Pb, As, Cu, and Zn) of rainwater is strongly influenced by anthropogenic sources rather than natural sources.

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.

Assessment of Contamination and Geochemical Dispersion by Heavy Metals in Roadside Tree Leaves of Platanus occidentalis and Soils in the City of Seoul (서울시 가로수목 중 플라타너스 잎과 토양의 중금속 원소에 대한 지구화학적 분산과 오염평가)

  • Choo, Mi Kyung;Lee, Jin-Soo;Lee, Jeonghoon;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.405-420
    • /
    • 2014
  • To investigate geochemical characteristics of soil and atmospheric environments by anthropogenic source, we have analyzed and determined heavy metal concentrations of the surface soils beneath roadside trees and leaves of Platanus occidentalis from 52 points in Seoul during autumn 2001. For comparison of the contents of heavy metal for the soil and leaf, we have analyzed heavy metal contents of the surface soils beneath roadside trees and leaves from 2 points in rural area of Yesan during the same time period. The composition of heavy metals of soils are relatively high for Cd, Co, Cr and Ni in industrial area (IA, Industrial Area) and high for Cu, Pb and Zn in heavy traffic area (HTA, Heavy Traffic Area). The heavy metal contents of rural area in Seoul are higher than those in Yesan. The differences of chemical compositions between the washed and unwashed leaves are high for Cd, Cu, Pb and Zn in the HTA. The element couples of Cd-Co, Cr-Ni and Pb-Zn for the soils had shown a good correlation and their contamination sources could be similar. The relationship for Pb-Cu and Cu-Zn showed good correlation in Platanus leaves. The relationship between soils and unwashed leaves show a good correlation for Cr, Cu, Pb and Zn but low correlation for Cd, Co, Fe, Mn and Ni. It is thought that the Cr, Cu, Pb and Zn were derived from contaminants of soils, whereas Cd, Co, Fe, Mn and Ni were originated from atmospheric source. From the spatial variations of elements for soils and leaves, Ni and Cr were dominant in the soils of IA and Cd, Cu and Zn were dominant in those of HTA. The Contamination by Cd-Pb and Cu-Zn in unwashed leaves were analyzed to show similar patterns. Using the enrichment factors (EF) of heavy metals in unwashed leaves, the EF sequences were to be Cu, Zn, Pb, Mn, Co, Ni, Cd and Cr. We identified that Cu, Zn, Pb and Mn were most problematic of environmental hazard in Seoul.