DOI QR코드

DOI QR Code

Wet Deposition of Heavy Metals during Farming Season in Taean, Korea

태안지역 강우의 중금속 함량 평가

  • 정구복 (농촌진흥청 국립농업과학원) ;
  • 김민경 (농촌진흥청 국립농업과학원) ;
  • 이종식 (농촌진흥청 국립농업과학원) ;
  • 김원일 (농촌진흥청 국립농업과학원) ;
  • 김건엽 (농촌진흥청 국립농업과학원) ;
  • 고병구 (국립식량과학원) ;
  • 강기경 (농촌진흥청 국립농업과학원) ;
  • 권순익 (농촌진흥청 국립농업과학원)
  • Received : 2011.06.08
  • Accepted : 2011.06.22
  • Published : 2011.06.30

Abstract

BACKGROUND: This experiment was conducted to investigate the distribution and burden characteristics of heavy metal in the rainwater sampled at Taean area, in the middle part of Korea, from April 2002 to October 2003. METHODS AND RESULTS: The relationship between concentration of heavy metal and other chemical properties in the rainwaters was also evaluated. Chemical properties in the rainwater were various differences with raining periods and years. It appeared that a weighted average pH values of rainwater was ranged from 5.0 to 5.1. Heavy metal concentrations in the rainwater were ranked as Pb > Zn > Cu > Ni > As > Cr > Cd. As compared with heavy metal concentrations of rainwater in 2002, Cu, Pb, and Zn were higher than other elements in 2003. There were positive correlation between major ionic components, such as ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, ${SO_4}^{2-}$ and ${NO_3}^-$, and As, Cd, Zn, Cr, and Ni concentrations in rainwater. For heavy metal distribution of rainwater, the order of average enrichment factor was Cd > Pb > As > Cu > Zn > Ni > Cr, and these were relatively higher than the natural components such as Fe, Mg and Ca. The monthly enrichment factor were relatively high, from August to October at Taean. The monthly amount of heavy metal precipitation was high in the rainy season from July to August because of great influence of rainfall. CONCLUSION(s): The results of this study suggest that the heavy metals(Cd, Pb, As, Cu, and Zn) of rainwater is strongly influenced by anthropogenic sources rather than natural sources.

태안지역 영농기 빗물의 중금속 농도 및 부화특성을 구명하기 위하여 2002년과 2003년 4~10월 사이에 빗물을 채수하여 중금속 분포와 가중평균 변화, 화학성분과의 관계 및 부화정도를 비교 검토하였다. 빗물 중 화학성분 함량은 조사 시기에 따라 함량변이가 심하였고, 강우량 대비 pH의 가중평균 값은 5.0~5.1 수준이었다. 빗물의 중금속 가중평균은 Pb > Zn > Cu > Ni > As > Cr > Cd 순이었고, 2002년과 비교하여 2003년에 Cu, Pb, 및 Zn 성분이 상대적으로 높게 나타났다. 강우중의 주 이온성분(${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, ${SO_4}^{2-}$${NO_3}^-$)은 중금속 중 As, Cd, Zn, Cr 및 Ni 성분함량과 고도의 정의 상관을 보였다. 빗물의 중금속 농도분포를 이해하기 위하여 부화계수(Enrichment factor)를 조사한 결과, 부화계수 평균치가 대체로 Cd > Pb > AS > Cu > Zn > Ni > Cr 순이었고, 주로 자연적 발생 유래원소로 알려진 Fe, Mg 및 Ca 등보다 상대적으로 높은 경향을 보였다. 월별 빗물의 중금속부하계수는 8~9월이 상대적으로 높았고, 중금속의 습식침적은 대체로 강우량의 영향을 받아 강우기인 7~8월에 높은 경향을 보였다.

Keywords

References

  1. Al-Momani, I. F., 2003. Trace elements in atmospheric precipitation at Northern Jordan measured by ICPMS: acidity and possible sources, Atmos. Environ. 37, 4507-4515. https://doi.org/10.1016/S1352-2310(03)00562-4
  2. Al-Khashman, O. A., 2005. Study of chemical composition in wet atmospheric precipitation in Eshidiya area, Jordan, Atmos. Environ. 39, 6175-6183. https://doi.org/10.1016/j.atmosenv.2005.06.056
  3. Bowen, H. J. M., 1979. Environmental chemistry of the elements, Academic press. London, p.333.
  4. Cheng M. C., You C. F., Lin F. J., Huang K. F., Chung C. H., 2011. Sources of Cu, Zn, Cd and Pb in rainwater at a subtropical islet offshore northern Taiwan, Atmos. Environ. 45(11), 1919-1928. https://doi.org/10.1016/j.atmosenv.2011.01.034
  5. Chudaeva, V. A., Urchenko, S. G., Chudaev, O. V., Sugimory, K., Matsuo, M., Kuno, A., 2006. Chemistry of rainwaters in the south Pacific area of Russia, J. Geochem. Explor. 88, 101-105. https://doi.org/10.1016/j.gexplo.2005.08.020
  6. Conko, K. M., Rice, K. C., Margaret, M. M., Kennedy, M., 2004. Atmospheric wet deposition of trace elements to a suburban environment, Reston, Virginia, USA, Atmos. Environ. 38, 4025-4033. https://doi.org/10.1016/j.atmosenv.2004.03.062
  7. Duce, R. A., Hoffman, G. L., Zoller, W. H., 1975. Atmospheric trace metals at remote northern and southern hemisphere sites: pollution or natural?, Science. 187, 339-342. https://doi.org/10.1126/science.187.4174.339
  8. Galloway, J.N., Thornton, J. D., Norton, S. A., Volchok, H. L., McLean, R. A., 1982. Trace metals in atmospheric deposition: a review and assessment, Atmos. Environ. 16, 1677-1700. https://doi.org/10.1016/0004-6981(82)90262-1
  9. Garcia, R., del Torres Ma, C., Padilla, H., Belmont, R., Azpra, E., Arcega-Cabrera, F., Baez, A., 2006. Measurement of chemical elements in rain from Rancho Viejo, a rural wooded area in the State of Mexico, Mexico, Atmos. Environ. 40, 6088-6100. https://doi.org/10.1016/j.atmosenv.2006.05.048
  10. Halstead, M. J. R., Cunninghame, R. G., Hunter, K. A., 2000. Wet deposition of trace metals to a remote site in Fiordland, New Zealand, Atmos. Environ. 34, 665-676. https://doi.org/10.1016/S1352-2310(99)00185-5
  11. Hou, H., Takamatsu, T., Koshikawa M. K., Hosomi, M., 2005. Trace metals in bulk precipitation and throughfall in a suburban area of Japan, Atmos. Environ. 39, 3583-3595. https://doi.org/10.1016/j.atmosenv.2005.02.035
  12. Hu, G. P., Balasubramanian, R., Wu, C. D., 2003. Chemical characterization of rainwater at Singapore, Chemosphere. 51, 747-755. https://doi.org/10.1016/S0045-6535(03)00028-6
  13. Jung, G. B., Lee, J. S., Kim, W. I., Kim, J. H., Yun, S. G., 2007. Wet Deposition of Heavy metals in Suwon Area, Korean J. Environ. Agric. 26(2), 116-123. https://doi.org/10.5338/KJEA.2007.26.2.116
  14. Kang, G. G., Collett, J. L., Shin, D. Y., Fujita, S. I., Kim, H. K., 2004. Comparison of the chemical composition of precipitation on the western and eastern coasts of Korea, Water, Air, and Soil Pollut. 151, 11-34. https://doi.org/10.1023/B:WATE.0000009854.40334.da
  15. Lee, J. S., Jung, G. B., Kim, J. H., Kim W. I., Lee, J. T., 2007. Characteristics of ionic composition of rainwater in Suwon, Korean J. of Soil Sci. Fert. 40(2), 151-155.
  16. Lee, J. S., Kim, J. H., Jung, G. B., Eom, K. C., 2003. Volume-weighted ion concentration of rainwater in Suwon area during farming season, Korean J. Agric. For. Meteor. 5, 1-5.
  17. Luck, J. M., and Ben Othman, D., 2002. Trace element and Pb isotope variability during rainy events in the NW Mediterranean: constraints on anthropogenic and natural sources, Chemical Geology. 182, 443-460. https://doi.org/10.1016/S0009-2541(01)00324-2
  18. Nriagu, J. O., 1989. A global assessment of natural sources of atmospheric trace metals, Nature. 338, 47-49. https://doi.org/10.1038/338047a0
  19. Roy, S., and Négrel, P., 2001. A Pb isotope and trace element study of rainwater from the Massif Central (France), Sci. Total Environ. 277, 225-239. https://doi.org/10.1016/S0048-9697(00)00883-4
  20. Takeda, K., Marumoto, K., Minamikawa, T., Sukugawa, H., Fujiwara, K., 2000. Three-year determination of trace metals and lead isotope ratio in rain and snow depositions collected in Higashi-Hiroshima, Japan, Atmos. Environ. 34, 4525-4535. https://doi.org/10.1016/S1352-2310(00)00103-5
  21. Uygur N., Karaca F., Alagha O., 2009. Prediction of sources of metal pollution in rainwater in Istanbul, Turkey using factor analysis and long-range transport models, Atmos. Res. 95(1), 55-64.
  22. Vuai, S. A., Tokuyama, A., 2011. Trend of trace metals in precipitation around Okinawa Island, Japan, Atmos. Res. 99(1), 80-84. https://doi.org/10.1016/j.atmosres.2010.09.010

Cited by

  1. Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes vol.30, 2016, https://doi.org/10.1016/j.margen.2016.07.002
  2. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75