• Title/Summary/Keyword: anthracis

Search Result 69, Processing Time 0.02 seconds

Expression of Anthrax Lethal Factor, a Major Virulence Factor of Anthrax, in Saccharomyces cerevisiae (Yeast내에서 탄저병 원인균인 Bacillus anthracis의 치사독소인 Lethal Factor 단백질 발현)

  • Hwang Hyehyun;Kim Joungmok;Choi Kyoung-Jae;Chung Hoeil;Han Sung-Hwan;Koo Bon-Sung;Yoon Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • Anthrax is an infectious disease caused by the gram-positive bacterium, Bacillus anthracis. Anthrax toxin is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF onto the cytosol. LF is a zinc-dependent metalloprotease, which is a critical virulence factor in cytotoxicity of infected animals. Therefore, it is of interest to develop its potent inhibitors for the neutralization of anthrax toxin. The first step to identify the inhibitors is the development of a rapid, sensitive, and simple assay method with a high-throughput ability. Much efforts have been concentrated on the preparation of powerful assays and on the screening of inhibitors using these system. In the present study, we have tried to construct anthrax lethal factor in yeast expression system to prepare cell-based high-throughput assay system. Here, we have shown the results covering the construction of a new vector system, subcloning of LF gene, and the expression of target gene. Our results are first trial to express LF gene in eukaryote and provide the basic steps in design of cell-based assay system.

Bacteriocin with a Broad Antimicrobial Spectirum, Produced by Bacillus sp. Isolated from Kimchi

  • Mah, Jae-Hyung;Kim, Kwang-Soo;Park, Jong-Hyun;Byun, Myung-Woo;Kim, Young-Bae;Hwang, Han-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.577-584
    • /
    • 2001
  • An antimicrobially active bacterium which was identified as Bacillus brevis, was isolated from kimchi. The antimicrobial activity was found against various Gram-positive and Gram-negative bacteria including some pathogens food-spoilage microorganisms, and some yeast strains. The antimicrobial activity was especially strong against Bacillus anthracis and Shigella dysenteriae. The strong activity was observed during an early stationary phase in the culture when incubated at $37^{\circ}C$ with initial medium pH of 6.8. The antimicrobial activity was found to be stable at $90^{\circ}C$ for 30 min and in the pH range of 3-11, and it was insensitive to organic solvents including acetone, acetonitrile, ethanol, and methanol. Analysis of the bacterocin on tricine-sodium dodecyl sulfate-polyacrylamide gel suggested a molecular mass of approximately 4.5-6.0 kDa. The antimicrobial substance was characterized as a bacteriocin, because of its proteinaceous nature and low molecular weight. The bacteriocin could potentially be used as a food preservative, because of its thermostable property and broad antimicrobial spectrum.

  • PDF

Application of Gaseous Ozone for Cleaning Biological Weapon Agent Contaminated Building (생물테러시 실내제독을 위한 효율적인 오존가스의 적용 방법)

  • Yoon, Je-Yong;Jeong, Woo-Dong;Mun, Sung-Min;Cho, Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.101-108
    • /
    • 2008
  • This study attempted to develop the technology by gaseous ozone for decontaminating building affected by a model of biological weapon agent(Bacillus subtilis spores) instead of Bacillus anthracis spore. The use of ozone is attractive method from a practical point of view of decontamination procedure since it has strong oxidation power but no residue after application. We examined the disinfection efficiency of gaseous ozone to Bacillus subtilis spores which suspension was sprayed on different material surfaces and dried. Three different types of gaseous ozone was applied : dry ozone, dry ozone with humidified air, and water bubbled wet ozone. Dry ozone(1500ppm) failed to achieve any significant inactivation for 2hrs. However, six log reduction of B. subtilis spore was achieved within 30min by 1500ppm of water bubbled wet ozone. This result shows the noticeable inactivation efficiency by gaseous ozone compared with previous studies. Good performance by wet ozone was also found for military material surface.(i.e. : gas mask hood, protective garments, army peinted metal surface).

Studies on Inactivated Combined Vaccine of Bovine Anthrax and Blackleg I. Preparation of Vaccine and Its Evaluation in Guinea Pigs (소의 탄저기종저 불활화 혼합백신에 관한 연구 I. 백신 제조와 기니픽에서의 효과시험)

  • Jeon, Yun Seong
    • Korean Journal of Veterinary Research
    • /
    • v.12 no.1
    • /
    • pp.71-75
    • /
    • 1972
  • Due to the fact that an inactivated anthrax vaccine may show no or lower immunogenicity and stability, a number of spore vaccines were exclusively used worldwide. In these studies non or less allergic strain of anthrax bacillus was selected and made a capsulated vegetative organisms. Anthrax organisms of a virulent strain were cultivated on sodium bicarbonate medium with or without adding I-alanine in which B. anthracis grew luxuriantly without forming spores. Inactivation of the organisims was carried out at $37^{\circ}C$ water bath for 3 days after the bacterial culture was mixed with formalin in a final concentration of two per cent. Aluminum hydroxide gel was added to the mixture of anthrax and blackleg bacterin. Guinea pigs were injected with the vaccine via subcutaneous or intramuscular route and challenged after three weeks, and the possibilities of protection was tested. Throughout the studies, the vaccines possibly protected the vaccinated guinea pigs more than 80 per cent compared to that of the controls. This experimental results strongly suggest that the vaccine may possibly applicable to the prevention of bovine anthrax and blackleg.

  • PDF

Screening of Peptides Bound to Anthrax Protective Antigen by Phage Display

  • Kim, Joung-Mok;Park, Hye-Yeon;Choi, Kyoung-Jae;Jung, Hoe-Il;Han, Sung-Hwan;Lee, Jae-Seong;Park, Joon-Shik;Yoon, Moon-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1784-1790
    • /
    • 2006
  • Bacillus anthracis is a causative agent of anthrax. Anthrax toxins are composed of a protective antigen (PA), lethal factor (LF), and edema factor (EF), in which the PA is a central mediator for the delivery of the two enzymatic moieties LF and EF. Therefore, the PA has been an attractive target in the prevention and vaccinization for anthrax toxin. Recently, it has been reported that the molecule consisting of multiple copies of PA-binding peptide, covalently linked to a flexible polymer backbone, blocked intoxification of anthrax toxin in an animal model. In the present study, we have screened novel diverse peptides that bind to PA with a high affinity (picomolar range) from an M13 peptide display library and characterized the binding regions of the peptides. Our works provide a basis to develop novel potent inhibitors or diagnostic probes with a diverse polyvalence.

Synthesis and Antimicrobial Activity of N-[2-(aryl/substituted aryl)-4-oxo-1,3-thiazolidin-3-yl]pyridine-4-carboxamide

  • Thomas, Asha B.;Nanda, Rabindra K.;Kothapalli, Lata P.;Deshpande, Avinash D.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.960-968
    • /
    • 2011
  • A series of isonicotinyl hydrazones and their 4-thiazolidinones have been synthesized by condensation of isonicotinic acid hydrazide with various aromatic aldehydes to yield Schiff's bases, followed by the cyclocondensation of Schiff's bases with 2-mercaptoacetic acid to yield their 4-thiazolidinones. The synthesized compounds have been characterized by their elemental, analytical and spectral studies. All these compounds were evaluated for their invitro antimicrobial activity against a spectrum of non-resistant and resistant microbial organisms. These studies proved that compounds 5e,i against B. subtilis; 5e,f,h against B. anthracis; 5g,i against S. aureus showed good activity at lower concentrations. Compounds 5d-5i displayed significant activity against resistant strain of K. pneumonia with minimum inhibitory potency in the concentration range of 2-16 ug/ml.

Studies on Inactivated Combined Vaccine of Bovine Anthrax and Blackleg (소의 탄저기종저 불활화 혼합백신에 관한 연구)

  • Jeon, Yun Seong
    • Korean Journal of Veterinary Research
    • /
    • v.10 no.1
    • /
    • pp.5-10
    • /
    • 1970
  • Due to the fact that an inactivated anthrax vaccine may lark its immunogenicity and stability of immunogen a number of spore vaccines were exclusively used worldwide. In these studies a number of important factors were emphasized to achieve the following: selection of non or less allergic strain of anthrax bacillus, capsulation of bacteria. obtaining of non sporulating but vegetative organisms, adequate inactivation of B. anthraccis by means of formalin, adsorption of immunogen to aluminum hydroxide gel. Non or less allergic strains of anthrax bacillus which is inactivated with formalin was selected by a hyperimmunization and shock test in rabbits. Obtaining capsular material and vegetative immunogen, a virulent anthrax organisms were cultivated on sodium bicarbonate medium with of without adding of l-alanine in which B, anthracis grew luxuriantly without forming spores. Inactivation was carried out at $37^{\circ}C$ water bath for 3 days after the bacterial culture was mixed with formalin, in a final concentration of two per cent of formalin. Aluminum hydroxide gel was added to the mixture of anthrax and blackleg bacterin. Vaccines were injected guinea pig via subcutaneous or intramusoular route and challenged after three weeks and the possibilities of protection was tested. Throughout the studies. the above mentioned vaccines possibly protected the vaccinated guinea pigs more than 80 per cent compared to that of the controls. This experimental results strongly suggest that the vaccine may possibly applicable to bovine.

  • PDF

The Effect of Polyphenols Isolated from Cynanchi wilfordii Radix with Anti-inflammatory, Antioxidant, and Anti-bacterial Activity

  • Jeong, Sunyoung;Lee, Sunwoo;Choi, Woo Jin;Sohn, Uy Dong;Kim, Wonyong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • Recently, Cynanchi wilfordii Radix has gained wide use in Asian countries as a functional food effective for relieving fatigue, osteoporosis, and constipation, particularly in menopausal disorders. However, its anti-inflammatory and anti-microbial activities have not been explored in detail to date. The anti-inflammatory, antioxidant, and anti-bacterial properties of the Cynanchi wilfordii Radix extracts obtained with water, methanol, ethanol, and acetone were compared. All 4 polyphenol-containing extracts exhibited anti-inflammatory and antioxidant effects. The ethanol extract was found to elicit the most potent reduction of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and cytokine (IL-$1{\beta}$, IL-6, IL-10, and TNF-${\alpha}$) levels, as well as inhibit the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner. The evaluation of antioxidant activity also revealed the ethanol extract to have the highest free radical scavenging activity, measured as $85.3{\pm}0.4%$, which is equivalent to 99.9% of the activity of ${\alpha}$ -tocopherol. In the assessment of anti-bacterial activity, only ethanol extract was found to inhibit the growth of the Bacillus species Bacillus cereus and Bacillus anthracis. These results show that polyphenols of Cynanchi wilfordii Radix have anti-inflammatory, antioxidant, and anti-bacterial properties that can be exploited and further improved for use as a supplementary functional food, in cosmetics, and for pharmaceutical purposes.

Monitoring the Ecology of Bacillus During Daqu Incubation, a Fermentation Starter, Using Culture-Dependent and Culture-Independent Methods

  • Yan, Zheng;Zheng, Xiao-Wei;Han, Bei-Zhong;Han, Jian-Shu;Nout, M.J. Robert;Chen, Jing-Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.614-622
    • /
    • 2013
  • Daqu, a traditional fermentation starter, has been used to produce attractively flavored foods such as vinegar and Chinese liquor for thousands of years. Although Bacillus spp. are one of the dominant microorganisms in Daqu, more precise information is needed to reveal why and how Bacillus became dominant in Daqu, and next, to assess the impact of Bacillus sp. on Daqu and its derived products. We combined culture-dependent and culture-independent methods to study the ecology of Bacillus during Daqu incubation. Throughout the incubation, 67 presumptive Bacillus spp. isolates were obtained, 52 of which were confirmed by 16S rDNA sequencing. The identified organisms belonged to 8 Bacillus species: B. licheniformis, B. subtilis, B. amyloliquefaciens, B. cereus, B. circulans, B. megaterium, B. pumilus, and B. anthracis. A primer set specific for Bacillus and related genera was used in a selective PCR study, followed by a nested DGGE PCR targeting the V9 region of the 16S rDNA. Species identified from the PCR-DGGE fingerprints were related to B. licheniformis, B. subtilis, B. amyloliquefaciens, B. pumilus, B. benzoevorans, and B. foraminis. The predominant species was found to be B. licheniformis. Certain B. licheniformis strains exhibited potent antimicrobial activities. The greatest species diversity occurred at the Liangmei stage of Daqu incubation. To date, we lack sufficient knowledge of Bacillus distribution in Daqu. Elucidating the ecology of Bacillus during Daqu incubation would enable the impact of Bacillus on Daqu to be accessed, and the quality and stabilization of Daqu-derived products to be optimized.

Anti-Inflammatory and Anti-Superbacterial Activity of Polyphenols Isolated from Black Raspberry

  • Kim, Seong Keun;Kim, Hyuna;Kim, Song Ah;Park, Hee Kuk;Kim, Wonyong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2013
  • The fruit of the black raspberry (Rubus coreanus Miquel) has been employed in traditional medicine, and recent studies have demonstrated its measureable biological activities. However, the root of the black raspberry has not been studied. Therefore, in this study, we evaluated the anti-inflammatory and antibacterial properties of the root and unripe fruit polyphenols of the black raspberry. Both polyphenols proved to have anti-inflammatory activity as evidenced by the decreased nitric oxide (NO), cytokines (IL-$1{\beta}$, IL-6, and IL-10) and prostaglandin E2 ($PGE_2$) levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. However, root polyphenols showed stronger anti-inflammatory activity than fruit polyphenols. LPS-induced mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 levels were also decreased, confirming the anti-inflammatory activity. Root polyphenols showed lethal activity against methicillin-resistant Staphy-lococcus aureus (MRSA), carbapenem-resistant Acinetobacter baumannii (CRAB), and Bacillus anthracis. In contrast, the black raspberry fruit did not demonstrate these properties. These data provide the first demonstration that black raspberry root has potential anti-inflammatory and anti-superbacterial properties that can be exploited as alternatives for use in the food and cosmetic industries and/or as pharmaceuticals.