Screening of Peptides Bound to Anthrax Protective Antigen by Phage Display

  • Kim, Joung-Mok (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Park, Hye-Yeon (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Choi, Kyoung-Jae (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Jung, Hoe-Il (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Han, Sung-Hwan (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Lee, Jae-Seong (Department of Molecular and Environmental Bioscience, College of Natural Sciences, Hanyang University) ;
  • Park, Joon-Shik (NANO Mechatronics Research Center, Korea Electronics Technology Institute) ;
  • Yoon, Moon-Young (Department of Chemistry, College of Natural Sciences, Hanyang University)
  • Published : 2006.11.30

Abstract

Bacillus anthracis is a causative agent of anthrax. Anthrax toxins are composed of a protective antigen (PA), lethal factor (LF), and edema factor (EF), in which the PA is a central mediator for the delivery of the two enzymatic moieties LF and EF. Therefore, the PA has been an attractive target in the prevention and vaccinization for anthrax toxin. Recently, it has been reported that the molecule consisting of multiple copies of PA-binding peptide, covalently linked to a flexible polymer backbone, blocked intoxification of anthrax toxin in an animal model. In the present study, we have screened novel diverse peptides that bind to PA with a high affinity (picomolar range) from an M13 peptide display library and characterized the binding regions of the peptides. Our works provide a basis to develop novel potent inhibitors or diagnostic probes with a diverse polyvalence.

Keywords

References

  1. Blaustein, R. O., T. M. Koehler, R. J. Collier, and A. Finkelstein. 1989. Anthrax toxin: Channel-forming activity of protective antigen in planar phospholipid bilayers. Proc. Natl. Acad. Sci. USA 86: 2209-2213
  2. Bradley, K. A., J. Mogridge, M. Mourez, R. J. Collier, and J. A. Young. 2001. Identification of the cellular receptor for anthrax toxin. Nature 414: 225-229 https://doi.org/10.1038/n35101999
  3. Friedlander, A. M. 1986. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261: 7123-7126
  4. Guidi-Rontani, C. 2002. The alveolar macrophage: The Trojan horse of Bacillus anthracis. Trends Microbiol. 10: 405-409 https://doi.org/10.1016/S0966-842X(02)02422-8
  5. Gupta, P., S. M. Waheed, and R. Bhatnagar. 1999. Expression and purification of the recombinant protective antigen of Bacillus anthracis. Protein Expr. Purif. 16: 369-376 https://doi.org/10.1006/prep.1999.1066
  6. Henderson, D. A. 1999. The looming threat of bioterrorism. Science 283: 1279-1282 https://doi.org/10.1126/science.283.5406.1279
  7. Hong, J., K. Lee, K. Kim, H. Kim, and H. Lee. 2004. Antitumor activity of peptide fraction from traditional Korean soy sauce. J. Microbiol. Biotechnol. 14: 628-630
  8. Jang, S. S., E. Choo, K. Han, T. Miyamoto, S. Heu, and S. Ryu. 2006. Antibiotic resistance and genetic diversity of Listeria monocytogenes isolated from chicken carcasses in Korea. J. Microbiol. Biotechnol. 16: 1276-1284
  9. Kobiler, D., Y. Gozes, H. Rosenberg, D. Marcus, S. Reuveny, and Z. Altboum. 2002. Efficiency of protection of guinea pigs against infection with Bacillus anthracis spores by passive immunization. Infect. Immun. 70: 544-560 https://doi.org/10.1128/IAI.70.2.544-550.2002
  10. Koivunen, E., W. Arap, H. Valtanen, A. Rainisalo, O. P. Medina, P. Heikkila, C. Kantor, C. G. Gahmberg, T. Salo, Y. T. Konttinen, T. Sorsa, E. Ruoslahti, and R. Pasqualini. 1999. Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17: 768-774 https://doi.org/10.1038/11703
  11. Little, S. F., B. E. Ivins, P. F. Fellows, and A. M. Friedlander. 1997. Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs. Infect. Immun. 65: 5171-5175
  12. Marvin, D. A. 1998. Filamentous phage structure, infection and assembly. Curr. Opin. Struct. Biol. 8: 150-158 https://doi.org/10.1016/S0959-440X(98)80032-8
  13. Miller, C. J., J. L. Elliott, and R. J. Collier. 1999. Anthrax protective antigen: Prepore-to-pore conversion. Biochemistry 38: 10432-10441 https://doi.org/10.1021/bi990792d
  14. Mogridge, J., K. Cunningham, and R. J. Collier. 2002. Stoichiometry of anthrax toxin complexes. Biochemistry 41: 1079-1082 https://doi.org/10.1021/bi015860m
  15. Mourez, M., D. B. Lacy, K. Cunningham, R. Legmann, B. R. Sellman, J. Mogridge, and R. J. Collier. 2001. A year of major advances in anthrax toxin research. Trends Microbiol. 10: 287-293 https://doi.org/10.1016/S0966-842X(02)02369-7
  16. Mourez, M., R. S. Kane, J. Mogridge, S. Metallo, P. Deschatelets, B. R. Sellman, G. M. Whitesides, and R. J. Collier. 2001. Designing a polyvalent inhibitor of anthrax toxin. Nat. Biotechnol. 19: 958-961 https://doi.org/10.1038/nbt1001-958
  17. Nassi, S., R. J. Collier, and A. Finkelstein. 2002. PA63 channel of anthrax toxin: An extended beta-barrel. Biochemistry 41: 1445-1450 https://doi.org/10.1021/bi0119518
  18. Petosa, C., R. J. Collier, K. R. Klimpel, S. H. Leppla, and R. C. Liddington. 1997. Crystal structure of the anthrax toxin protective antigen. Nature 385: 833-838 https://doi.org/10.1038/385833a0
  19. Possee, R. D. 1997. Baculoviruses as expression vectors. Curr. Opin. Biotechnol. 8: 569-572 https://doi.org/10.1016/S0958-1669(97)80030-4
  20. Ren, Z. and L. W. Black. 1998. Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid. Gene 215: 439-444 https://doi.org/10.1016/S0378-1119(98)00298-4
  21. Santini, C., D. Brennan, C. Mennuni, R. H. Hoess, A. Nicosia, R. Cortese, and A. Luzzago. 1998. Efficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J. Mol. Biol. 282: 125-135 https://doi.org/10.1006/jmbi.1998.1986
  22. Scobie, H. M. and J. A. Young. 2005. Interactions between anthrax toxin receptors and protective antigen. Curr. Opin. Microbiol. 8: 106-112 https://doi.org/10.1016/j.mib.2004.12.005
  23. Seo, M., J. Lee, M. Kim, H. Chae, and H. Myung. 2006. Selection and characterization of peptides specifically binding to $TiO_2$ nanoparticles. J. Microbiol. Biotechnol. 16: 303-307
  24. Sellman, B. R., M. Mourez, and R. J. Collier. 2001. Dominant-negative mutants of a toxin subunit: An approach to therapy of anthrax. Science 292: 695-697 https://doi.org/10.1126/science.109563
  25. Sellman, B. R., S. Nassi, and R. J. Collier. 2001. Point mutations in anthrax protective antigen that block translocation. J. Biol. Chem. 276: 8371-8376 https://doi.org/10.1074/jbc.M008309200
  26. Sidhu, S. S. 2000. Phage display in pharmaceutical biotechnology. Curr. Opin. Biotechnol. 11: 610-616 https://doi.org/10.1016/S0958-1669(00)00152-X
  27. Smith, G. P. 1985. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315-1317 https://doi.org/10.1126/science.4001944
  28. Wrighton, N. C., F. X. Farrell, R. Chang, A. K. Kashyap, F. P. Barbone, L. S. Mulcahy, D. L. Johnson, R. W. Barrett, L. K. Jolliffe, and W. J. Dower. 1996. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273: 458-464 https://doi.org/10.1126/science.273.5274.458