• Title/Summary/Keyword: anthracis

Search Result 69, Processing Time 0.023 seconds

Discrimination of Bacillus anthracis from Bacillus cereus Group Using KHT5 Marker (KHT5 마커를 사용한 Bacillus cereus 그룹에서 Bacillus anthracis의 구별)

  • 김형태;김성주;채영규
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.40-44
    • /
    • 2003
  • Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. In order to develop a DNA marker specific for Bacillus anthracis and to discriminate this species from Bacillus cereus group, we applied the randomly amplified polymorphic DNA (RAPD)-PCR technique to a collection of 29 strains of the genus Bacillus, including 22 species of the B. cereus group. A 709-bp RAPD marker (KHT5) specific for B. anthracis was obtained from B. anthracis BAK. The PCR product of internal primer set from the KHT5 fragment distinguished B. anthracis from the other species of the B. cereus group.

Identification Based on Computational Analysis of rpoB Sequence of Bacillus anthracis and Closely Related Species (Bacillus anthracis와 그 유연종의 rpoB 유전자 컴퓨터 분석을 통한 동정)

  • Kim, Kyu-Kwang;Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • Computational analysis of partial rpoB gene sequence (777 bp) was done in this study to identify B. anthracis and its closely related species B. cereus and B. thuringiensis. Sequence data including 17 B. anthracis strains, 9 B. cereus strains, and 7 B. thuringiensis strains were obtained by searching databases. Those sequences were aligned and used for other computational analysis. B. anthracis strains were identificated by in silico restriction enzyme digestion. B. cereus and B. thuringiensis were not segregated by this method. Those sequencing and BLAST search were required to distinguish the two. In actual identification tests, B. anthracis strains could be identified by PCR-RFLP, and B. cereus and B. thuringiensis strains were distinguished by BLAST search with reliable e-value. In this study fast and accurate method for identifying three Bacillus species, and flow chart of identification were developed.

Investigation on Bacillus anthracis isolated from Kyong-Ju (경주에서 분리된 탄저균에 대한 연구)

  • 이준규;이은미;차우양;김정화;김영환;이양수;김우현;정종식
    • Korean Journal of Veterinary Service
    • /
    • v.18 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • The present study was conducted to investigate results of B. anthracis isolated from Anthrax in the Kyong-Ju of Feb. 12. 1994. 1. In biochemical feature, B. anthracis was a gram-positive rod, non-motility, sporulation, capsulation. It was positive in gelatinase, starch hydrolysis, glucose. But negative in urease, arabinose, mannitol, xylose. 2. B. anthracis grew well on B4 Br A TSA after incubation for 24 hours. The organisim grew well on BA, Br. A, NA, TSA after incubation for 72 hours. The media grew well on Br A instead of BA. 3. On 5% blood agar by laboratory animal, ${\beta}$ -hemolysis was produced from 36 hours to 48 hours incubation. There was perfect ${\beta}$-hemolysis after incubation for 48 hours. On the other side ${\beta}$-hemolysis was begun on 5% goat blood agar after incubation for 60 hours. 4. In the test of antimicrobial susceptibility, B. anthracis was very sensitive to AM, CF, TE, ENR, GM, AN, DFX, S, P, TYLO, N, KM, C, E, Lins+Sp, NN, CC, CFP, CB were sensitive one by one. B. anthracis was no-sensitive to L, XNL, TIA, CL, SXT 5. B. anthracis had never sensitivity to direct inoculation of rat and chicken, after subcutanous inj. It was very sensitive to mouse and goat, hamster, guinea pig, rabbit had a sensibility one by one. 6. The dead laboratory animal which had been inoculated with B. anthracis preserved at $37^{\circ}C$ incubation, B. anthracis didn't cultivate on non-dissected animal after 80 hours but cultivate on dissected animal after 360 hours. 7. The rapidly death could cause high concentration, died from 420 after S. C. 8. The blood smeared samples of hamster from inoculation with B. anthracis, spore germinated In 37$^{\circ}C$ after 5 hours, in $32^{\circ}C$ after 6 hours, in room temperature after 9 hours, in $-4^{\circ}C$ to $-20^{\circ}C$ after 10 hours. 9. B, anthracis inoculated to laboratory animal after SC or PO. Mice and rats feces didn't cultivated with B. anthracis after SC, but did cultivated with B. anthracis after PO. 10. In the test of disinfectant, B. anthracis was high effective to $HgC1_2$, formalin, effect phenol, cresol, but non-effect NaOH, ethanol.

  • PDF

Molecular Diversity of pagA Gene from Baciilus anthracis (탄저균 pagA 유전자의 분자적 다양성)

  • 김성주;조기승;최영길;채영규
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. The anthrax toxin contains three components, including the protective antigen (PA), which binds to eucaryotic cell surface receptors and mediates the transport of toxins into the cell. In this study, the entire 2,294-nucleotide protective antigen gene (pag) was sequenced from 4 of B. anthracis strains to identify potential variation in the toxin and to further our understanding of B. anthracis evolution in Korea. Sequence alignment of the entire PA gene from 30 strains representative of the four B. anthracis diversity groups revealed mutations. The mutation of B. anthracis BAK are located adjacent to a highly antigenic region crossing the junction between PA domains 3 and 4 shown to be critical to LF binding. The different mutational combinations observed in this study give rise to 11 PA genotypes and 4PA phenotypes. Three-dimensional analysis of all the amino acid changes (Ala to Val) observed in BAK indicated that these changes are not only close sequentially but also very close in three-dimensional space to the antigenic region importan tfor LF binding. Phylogenetic (cladistic) analysis of the pag corresponded with previous strain grouping based on chromosomal variation, suggesting that plasmid evolution in B. anthracis has occurred with little or no horizontal transfer between the different strains.

  • PDF

Detection of Virulence-Associated Genes in Clinical Isolates of Bacillus anthracis by Multiplex PCR and DNA Probes

  • Kumar, Sanjay;Tuteja, Urmil
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1475-1481
    • /
    • 2009
  • Anthrax is a zoonotic disease caused by Bacillus anthracis, and well recognized as a potential agent for bioterrorism. B. anthracis can be identified by detecting the virulence factors genes located on two plasmids, pXO1 and pXO2. The aim of the present study was to determine the presence of virulence genes in 27 isolates of B. anthracis isolated from clinical and environmental samples. For this purpose, multiplex PCR and DNA probes were designed to detect protective antigen (pag), edema factor (cya), lethal factor (lef), and capsule (cap) genes. Our results indicated that all the isolates contained all the above virulence genes, suggesting that the isolates were virulent. To the best our knowledge, this is the first study about the determination of virulence marker genes in clinical and environmental isolates of B. anthracis using multiplex PCR and DNA probes in India. We suggest that the above methods can be useful in specific identification of virulent B. anthracis in clinical and environmental samples.

Analysis of Cellular Fatty Acid Methyl Esters (FAMEs) for the Identification of Bacillus anthracis (균체 지방산 분석을 이용한 Bacillus anthracis의 동정)

  • Kim, Won-Yong;Song, Tae-Wook;Song, Mi-Ok;Nam, Ji-Yeon;Park, Chul-Min;Kim, Ki-Jung;Chung, Sang-In;Choi, Chul-Soon
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.1
    • /
    • pp.31-40
    • /
    • 2000
  • Bacillus anthracis, the etiological agent of anthrax has been classified into the Bacillus subgroup I with B. cereus, B. mycoides and B. thuringiensis based on morphological and DNA similarity. DNA studies have further indicated that these species have very AT-rich genomes and high homology, indeed it has been proposed that these four sub-species be recognized as members of the one species. Several methods have been developed to obtain good differentiation between these species. However, none of these methods provides the means for an absolutely correct differntiation. The analysis of fatty acid methyl esters (FAMEs) was employed as a quick, simple and reliable method for the identification of 21 B. anthracis strains and closley related strains. The most significant differences were found between B. anthracis and B. anthracis closely related strains in FAMEs profiles. All tested strains of B. anthracis had a branched fatty acid C17:1 Anteiso A, whereas the fraction of unsaturated fatty acid Iso C17:1 w10c was found in B. anthracis closely related strains. By UPGMA clustering analysis of FAMEs profiles, all of the tested strains were classified into two clusters defined at Euclidian distance value of 24.5. The tested strains of B. anthracis were clustered together including Bacillus sp. Kyungjoo 3. However, the isolates of B. anthracis closely related spp. Rho, S10A, 11R1, CAU9910, CAU9911, CAU9912 and CAU9913 were clustered with the other group. On the basis of these results, isolates of B. anthracis Bongchon, Kyungjoo 1, 2 and Bacillus sp. Kyungjoo 3 were reclassified as a B. anthracis. It is concluded that FAMEs analysis provides a sensitive and reliable method for the identification of B. anthracis from closely related taxa.

  • PDF

Discovery of Protein Biomarkers for Infected Bacillus anthracis Spores in Using Proteomic Analysis (프로테오믹스를 이용한 탄저균 아포 감염에 대한 바이오마커 탐색)

  • 서귀문;남덕화;오광근;김성주;김지천;채영규
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.77-81
    • /
    • 2004
  • The etiological agent is Bacillus anthracis, a gram-positive rod-shaped bacterium able to form spores. In order to elucidate the mechanism of infecttion on human macrophage cells, we performed two-dimensional electrophoresis and MALDI-TOF analysis using the infected human macrophage cells with the spores of B. anthracis Sterne of inactivated B. anthracis Sterne. We identified 9 proteins which related to the infection of Bacillus anthracis spores on human macrophage cells at the early stage events. Maybe nine proteins will be bio-markers and vaccine candidates to the Bacillus anthracis spore infection.

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Effectiveness of calcium hypochlorite, quaternary ammonium compounds, and sodium hypochlorite in eliminating vegetative cells and spores of Bacillus anthracis surrogate

  • Yim, Jin-Hyeok;Song, Kwang-Young;Kim, Hyunsook;Bae, Dongryeoul;Chon, Jung-Whan;Seo, Kun-Ho
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.11.1-11.7
    • /
    • 2021
  • Background: The spore-forming bacterium Bacillus anthracis causes anthrax, an often-fatal infection in animals. Therefore, a rapid and reliable strategy to decontaminate areas, humans, and livestock from B. anthracis is very critical. Objectives: The aim of this study was performed to evaluate the efficacy of sodium hypochlorite, calcium hypochlorite, and quaternary ammonium compound (QAC) sanitizers, which are commonly used in the food industry, to inhibit spores and vegetative cells of B. anthracis surrogate. Methods: We evaluated the efficacy of sodium hypochlorite, calcium hypochlorite, and a QAC in inhibiting vegetative cells and spores of a B. anthracis surrogate. We treated a 0.1-mL vegetative cell culture or spore solution with 10 mL sanitizer. The samples were serially diluted and cultured. Results: We found that 50 ppm sodium hypochlorite (pH 7), 1 ppm calcium hypochlorite, and 1 ppm QAC completely eliminated the cells in vegetative state. Exposure to 3,000 ppm sodium hypochlorite (pH 7) and 300 ppm calcium hypochlorite significantly eliminated the bacterial spores; however, 50,000 ppm QAC could not eliminate all spores. Conclusions: Calcium hypochlorite and QAC showed better performance than sodium hypochlorite in completely eliminating vegetative cells of B. anthracis surrogate. QAC was ineffective against spores of the B. anthracis surrogate. Among the three commercial disinfectants tested, calcium hypochlorite most effectively eliminated both B. anthracis vegetative cells and spores.

Proteomic Analysis of the Oxidative Stress Response Induced by Low-Dose Hydrogen Peroxide in Bacillus anthracis

  • Kim, Sang Hoon;Kim, Se Kye;Jung, Kyoung Hwa;Kim, Yun Ki;Hwang, Hyun Chul;Ryu, Sam Gon;Chai, Young Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.750-758
    • /
    • 2013
  • Anthrax is a bacterial disease caused by the aerobic spore-forming bacterium Bacillus anthracis, which is an important pathogen owing to its ability to be used as a terror agent. B. anthracis spores can escape phagocytosis and initiate the germination process even in antimicrobial conditions, such as oxidative stress. To analyze the oxidative stress response in B. anthracis and thereby learn how to prevent antimicrobial resistance, we performed protein expression profiling of B. anthracis strain HY1 treated with 0.3 mM hydrogen peroxide using a comparative proteomics-based approach. The results showed a total of 60 differentially expressed proteins; among them, 17 showed differences in expression over time. We observed time-dependent changes in the production of metabolic and repair/protection signaling proteins. These results will be useful for uncovering the metabolic pathways and protection mechanisms of the oxidative response in B. anthracis.