• Title/Summary/Keyword: anthocyanin related gene

Search Result 18, Processing Time 0.021 seconds

Physiology of Anthocyanin Accumulation in Corn Leaves Treated with Metsulfuron-methyl (Metsulfuron-methyl 처리에 의한 옥수수의 Anthocyanin 축적 생리에 관한 연구)

  • Park, E.Y.;Kim, J.S.;Cho, K.Y.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.246-256
    • /
    • 1998
  • The objective of this study was to investigate the cause of anthocyanin accumulation in the corn leaves treated with metsulfuron-methyl. The accumulation of anthocyanin and total sugar was increased with the time after metsulfuron-methyl application and with the greater herbicide concentration as well. The anthocyanin increase was alleviated by the combined treatment of DUMU or the tank-mixture treatment of metsulfuron-methyl, isoleucine and valine. Metsulfuron-methyl could not enhance the anthocyanin formation in the nonchlorophyllous tissue in which photosynthetic carbohydrate production was limited. Upon the exogenous supply of sucrose, however, the contents of anthocyanin was increased in the both chlorophyllous and nonchlorophyllous leaf segment of corn without the herbicide treatment. On the other hand, the herbicide itself did not influence Hill reaction in vitro and photosynthesis electron transport in vivo. The anthocyanin accumulation by metsulfitronmethyl did not occur in the corn mutants deficient in the structural gene of anthocyanin synthesis, but corns deficient in the regulatory gene had the anthocyanin accumulation only in R-r and r-r type. The above results suggest that the purple pigmentation in the corn leaves treated with metsulfuron-methyl is related to the accumulation of photosynthetic carbohydrate which can stimulate the. regulatory gene related to anthocyanin biosynthetic pathway.

  • PDF

CAPS Marker Linked to Tomato Hypocotyl Pigmentation

  • Kim, Hyoun-Joung;Lee, Heung-Ryul;Hyun, Ji-Young;Won, Dong-Chan;Hong, Dong-Oh;Harn, Chee-Hark
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.56-63
    • /
    • 2012
  • Tomato hypocotyl can generally be one of two colors, purple or green. Genetically, this trait is controlled by a single dominant gene. Hypocotyl tissue specific color expression is one of many visible genetic marker sources used to select tomato progeny. However, the visible marker does not show a clear distinction between homozygous genotype and heterozygous genotype from the breeding lines. Therefore, to identify a hypocotyl pigmentation related marker, we screened DNA polymorphisms in thirteen tomato lines showing purple or green hypocotyls. The markers used for screening consisted of primer set information obtained from anthocyanin related genes, conserved ortholog set II (COS II) marker sets localized near anthocyanin related genes, and restriction fragment length polymorphism (RFLP) markers localized near COS II markers, which produce polymorphisms between purple and green tomatoes. One primer from a RFLP fragment resulted in a polymorphism on agarose gel electrophoresis. From the RFLP fragment, a cleaved amplified polymorphic sequence (CAPS) marker was developed to distinguish between purple and green hypocotyls. The genotypes of 135 $F_2$ individuals were analyzed using the CAPS marker, and among them, 132 individuals corresponded to the phenotypes of hypocotyl pigmentation.

Floral Pigmentation and Expression of Anthocyanin-Related Genes in Bicolored Roses 'Pinky Girl' as Affected by Temporal Heat Stress (일시적 고온 스트레스가 복색 장미 'Pinky Girl'의 화색 및 관련 유전자 발현에 미치는 영향)

  • Lee, Seul Ki;Kim, Wan Soon
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.923-931
    • /
    • 2015
  • This study was conducted to investigate petal pigmentation and the expression patterns of anthocyanin-related genes in bicolored roses 'Pinky Girl' treated with temporal heat stress (THS). Cyanin accumulation in petals was correlated with floral bud development and started rapidly as floral buds began to open, defined as the $4^{th}$ stage of floral bud development ($S_4$). This stage seems to be most susceptible to petal pigmentation. The total of cyanin pigmentation at blooming was significantly decreased (by 45.5%) with exposure to THS ($39/18^{\circ}C$ for three days at $S_4$) in comparison with control. Meanwhile, the expression of anthocyanin-related genes such as CHS, CHI, F3'H, DFR, ANS, 3GT, and 5GT was relatively promoted by THS. Only F3H was less expressed (by 26.7%) with THS treatment; thus, F3H could be a key gene for bicolor promotion in 'Pinky Girl' among anthocyanin-related genes. Overall, the expression pattern of the most anthocyanin-related genes did not match the trends of cyanin pigmentation in petals. These results suggest that floral pigmentation could be associated with other mechanisms related to anthocyanin biosynthesis such as post-translational effects and regulatory genes.

Comparison of transcriptome analysis between red flash peach cultivar and white flash peach cultivar using next generation sequencing (Next generation sequencing 방법을 이용한 적육계 복숭아와 백육계 복숭아의 전사체 분석)

  • Kim, Se Hee;Nam, Eun Young;Cho, Kang-Hee;Shin, Il Sheob;Kim, Hyun Ran;Hwang, Hae Seong
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.273-280
    • /
    • 2012
  • Differences of gene expression between red flash peach cultivar and white flash peach cultivar were investigated by Nest-generation sequencing (NGS). EST from the red flash peach cultivar and white flash peach cultivar were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, temperature stress, ethylene signal pathway were significantly higher in white flash peach cultivar than in red flash peach cultivar. On the other hand, the up-regulation of proteins involved in anthocyanin and flavonol biosynthesis and protein degradation and sorbitol metabolism were observed in red flash peach cultivar. Chalcone synthase was preferentially expressed in the red flesh peach cultivar, agreeing with the accumulation of anthocyanin and expression of other previously identified genes for anthocyanin biosynthesis. Anthocyanin pathway related genes CHS, F3H, DFR, LDOX, UFGT differentially expressed between red flash peach cultivar and white flash peach cultivar. These results suggest that red flash peach cultivar and white flash peach cultivar have different anthocyanin biosynthesis regulatory mechanisms.

Antioxidant capacity in seedling of colored-grain wheat under water deficit condition

  • Kim, Dae Yeon;Hong, Min Jeong;Jung, Woo Joo;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.140-140
    • /
    • 2017
  • Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. The anthocyanin and polyphenolic synthesis and accumulation is generally stimulated in response to biotic or abiotic stresses. Here, we analyzed genome wide transcripts in seedling of colored-grain wheat response to ABA and PEG treatment. About 900 and 1500 transcripts (p-value < 0.05) from ABA and PEG treatment were aligned to IWGSC1+popseq DB which is composed of over 110,000 transcripts including 100,934 coding genes. NR protein sequences of Poaceae from NCBI and protein sequence of transcription factors originated from 83 species in plant transcription factor database v3.0 were used for annotation of putative transcripts. Gene ontology analysis were conducted and KEGG mapping was performed to show expression pattern of biosynthesis genes related in flavonoid, isoflavonoid, flavons and anthocyanin biopathway. DroughtDB (http://pgsb.helmholtz-muenchen.de/droughtdb/) was used for detection of DEGs to explain that physiological and molecular drought avoidance by drought tolerance mechanisms. Drought response pathway, such as ABA signaling, water and ion channels, detoxification signaling, enzymes of osmolyte biosynthesis, phospholipid metabolism, signal transduction, and transcription factors related DEGs were selected to explain response mechanism under water deficit condition. Anthocyanin, phenol compound, and DPPH radical scavenging activity were measured and antioxidant activity enzyme assays were conducted to show biochemical adaptation under water deficit condition. Several MYB and bHLH transcription factors were up-regulated in both ABA and PEG treated condition, which means highly expressed MYB and bHLH transcription factors enhanced the expression of genes related in the biosynthesis pathways of flavonoids, such as anthocyanin and dihydroflavonols in colored wheat seedlings. Subsequently, the accumulation of total anthocyanin and phenol contents were observed in colored wheat seedlings, and antioxidant capacity was promoted by upregulation of genes involved in maintaining redox state and activation of antioxidant scavengers, such as CAT, APX, POD, and SOD in colored wheat seedlings under water deficit condition. This work may provide valuable and basic information for further investigation of the molecular responses of colored-grain wheat to water deficit stress and for further gene-based studies.

  • PDF

Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L.

  • Jeon, Donghyun;Lee, Solji;Choi, Sehyun;Seo, Sumin;Kim, Changsoo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.105-117
    • /
    • 2020
  • Abiotic stress is one of the most serious problems in plant productivity because it dramatically delays plant growth and development. One of the abiotic stresses, soil salinity, has an adverse effect on plant growth, particularly in areas where irrigation is necessary like semiarid Asia and Africa. Among several physiological parameters, anthocyanin accumulation is a valuable indicator of the condition of the plant, and it tends to increase under salt stress conditions because of its protective role in such an environment. Consequently, it may be important to search for well adapted genotypes for upcoming climate changes. Anthocyanins are known to have important roles in defense against biotic and abiotic stresses, providing important functions for protecting plant cells from reactive oxygen species. In this study, we investigated the anthocyanin accumulation between two Korean sorghum genotypes, Sodamchal and Nampungchal. The two genotypes were subjected to a regulated salinity condition, and the anthocyanin contents were evaluated in both. In Nampungchal, the anthocyanin content increased with 150 mM NaCl treatment during the time course of the experiment. However, the anthocyanin content of Sodamchal decreased in the same condition. The measured values of the anthocyanin content should be useful to identify the intensity of the salt tolerance in Sorghum bicolor L. Furthermore, we studied gene expression profiling of salt stress related genes with qRT-PCR. These results suggest that Nampungchal is a more tolerant genotype to salt stress compared to Sodamchal. This information should be useful for breeding salt-resistant cultivars in sorghum.

Regulation of Anthocyanin Biosynthesis by Light and Nitrogen in Sarracenia purpurea (Sarracenia purpurea에서 빛 및 질소 의존성 anthocyanin 생합성)

  • Yoon, Joon Sup;Lee, Seung hi;Riu, Young Sun;Kong, Sam-Geun
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1055-1061
    • /
    • 2019
  • Sarracenia purpurea as a carnivorous plant in the family Sarraceniaceae is known to require strong light for its growth and to absorb nutrients from the decomposed molecules of insects that are attracted by color, sweet juice, and the like. S. purpurea grew greenish in whole body under weak light conditions, while the whole of the insectivorous sac including leaves, is changed to dark red under strong light conditions. The phenomenon of reddish S. purpurea is thought to be related to the flavonoid pigment anthocyanin. Interestingly, the color change was not observed when S. purpurea was grown in a growth condition with abundant nitrogen fertilizer. The expression levels of anthocyanin contents and biosynthesis-related genes were strongly correlated with light intensity and nitrogen fertilizer. The anthocyanin content in the strong light condition ($240{\mu}mol\;m^{-2}s^{-1}$) was 6.15 times higher than that in the weak light ($40{\mu}mol\;m^{-2}s^{-1}$). In contrast, the anthocyanin contents were not significantly changed when 0.8% urea solution was supplied as nitrogen fertilizer. Consistently, CHALCONE SYNTHASE (CHS) gene was up-regulated by strong light and down-regulated by nitrogen fertilizer. These results suggest that the environmental changes of light and nitrogen in soil regulate the anthocyanin content in S. purpurea.

Marker-assisted Genotype Analysis of Bulb Colors in Segregating Populations of Onions (Allium cepa)

  • Kim, Sunggil;Bang, Haejeen;Yoo, Kil-Sun;Pike, Leonard M.
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.192-197
    • /
    • 2007
  • Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.

Identifying Genes Related with Self-thinning Characteristics in Apple by Differential Display PCR (Differential Display PCR을 이용한 사과 자가적과성 연관 유전자 탐색)

  • Kim, Se Hee;Heo, Seong;Shin, Il Sheob;Kim, Jeong-Hee;Cho, Kang-Hee;Kim, Dae-Hyun;Hwang, Jeong Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.565-573
    • /
    • 2010
  • Thinning of apple fruitlets is one of the most laborious and important works for the improvement of fruit quality and for the promotion of sufficient flower bud formation to prevent alternate bearing in commercial cultivars. Lateral fruits of self-thinning apple cultivars fall naturally within 30 days after full bloom and only central fruit remains to mature. Differences of gene expression between central fruit and lateral fruit were investigated by differential display (DD) PCR. Partial cDNAs of 30 clones from the central fruit and 24 clones from the lateral fruit were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, senescence, temperature stress, protein degradation, fruit browning, sorbitol metabolism were significantly higher in pedicels of lateral fruit than in pedicels of central fruit. On the other hand, the up-regulation of proteins involved in anthocyanin and flavanol biosynthesis and ethylene synthesis were observed in pedicels of central fruit. In Real time PCR analysis, cytochrome P450 gene was confirmed as showing a higher expression level in lateral fruit than in central fruit. The results of this study indicate that differentially expressed genes are related to self-thinning characteristics in apple tree.

cDNA cloning and expression pattern of Cinnamate-4-Hydroxylase in the Korean black raspberry

  • Baek, Myung-Hwa;Chung, Byung-Yeoup;Kim, Jin-Hong;Kim, Jae-Sung;Lee, Seung-Sik;An, Byung-Chull;Lee, In-Jung;Kim, Tae-Hoon
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.529-536
    • /
    • 2008
  • Cinnamate-4-hydroxylase (C4H) is a key enzyme in the phenylpropanoid pathway, which is responsible for synthesizing a variety of secondary metabolites that participate in development and adaptation. In this study, we isolated a full-length cDNA of the C4H gene from the Korean black raspberry (Rubus sp.) and found that this gene existed as a single gene. By comparing the deduced amino acid sequence of Rubus sp. C4H with other sequences reported previously we determined that this sequence was highly conserved among widely divergent plant species. In addition, quantitative real time PCR studies indicated that the C4H gene had a differential expression pattern during fruit development, where gene expression was first detected in green fruit and was then remarkably reduced in yellow fruit, followed by an increase in red and black fruit. To investigate the two peaks in expression observed during fruit development and ripening, we measured the flavonoid content. The content of the major flavanol of Korean black raspberry fruits was determined to be highest at the beginning of fruit development, followed by a gradually decrease according to the developmental stages. In contrast, the content of anthocyanins during the progress of ripening was dramatically increased. Our results suggest that the C4H gene in Korean black raspberry plays a role during color development at the late stages of fruit ripening, whereas the expression of C4H gene during the early stages may be related to the accumulation of flavanols.