• Title/Summary/Keyword: anthocyanin,

Search Result 826, Processing Time 0.035 seconds

Optimal Conditions for Anthocyanin Extraction from Black Rice Bran and Storage Stability of Anthocyanin Extract (흑미 미강으로부터 안토시아닌의 최적 추출 조건 및 안토시아닌 추출 분말의 저장 안정성)

  • Kim, Hyo Ju;Wee, Ji-Hyang;Yang, Eun Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1543-1549
    • /
    • 2015
  • Black rice bran, a by-product from rice milling process, is a good natural source of anthocyanin pigment. The purpose of this study was to determine the optimum conditions for anthocyanin extraction from black rice bran as well as the stability of anthocyanin extract according to different storage temperatures. The main anthocyanin in 'Heugkwang' rice bran was identified as cyanidine-3-glucoside (C3G) by HPLC and LC-MS/MS. The yield and C3G content of black rice bran extract were investigated with various extraction solvents, temperatures, and times. The results indicate that the optimum extraction solvent, temperature, and time were 50% ethanol, $70^{\circ}C$, and 2 h, respectively. The stability of anthocyanin extract was studied during a storage period of 168 days at various temperatures ($-20^{\circ}C$, $4^{\circ}C$, and room temperature). Hunter's values (L, a, and b) of anthocyanin extract increased, whereas C3G content continuously decreased up to 168 days. Variations in Hunter's values and C3G content become larger as storage temperature increased. Anthocyanin extract from black rice bran was very stable, as C3G content after storage at all temperatures was maintained at more than 90% of initial content. These results suggest that anthocyanin extract from black rice bran may be useful as a natural food colorant.

Diversity and Function of Pigments in Colored Rice (유색미 색소의 종류와 기능)

  • Choi, Hae-Chune;Oh, Sea-Kwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.spc1
    • /
    • pp.1-9
    • /
    • 1996
  • The edible natural pigments extracted from plant organs become steadly popular to consumer because of those physiological functions desirable for food preservation and human health in recent years. There are a number of colored rice genotypes from light brown to blackish purple via reddish brown and purple. Some researchers reported their results on extraction recipes and identification of chemical structure of the pigments from the colored rice. The pigments extracted from colored rices can be largely divided into two types of anthocyanin and tannin pigments. Anthocyanin pigments are mainly contained in purple or blackish purple rice while tannin pigments are mainly contained in brown or reddish brown rice. Some brownish purple rices showed two peaks of tannin and anthocyanin pigments simultaneously. Purple rices showed better extraction of pigments in $0.1\%$ HCl-contained $80\%$ methanol or $0.5\%$ malic-acid-contained $80\%$ ethanol, while red rices revealed better extraction of pigments in $0.01\%$ citric-acid-contained $80\%$ ethanol. The anthocyanin pigments are generally unstable to heat, light and acidity of solution. The pigments extracted from colored rice can be preserved stably under the dark and cool(<$5^{\circ}C$) condition and at pH $2.0\~4.0$. The anthocyanin pigments of purple rice are mainly composed by cyanidin-3-glucoside (chrysanthemin). The other pigment fractions in purple rice were identified to peonidin-3-gluco-side, malvidin-3-galactoside(uliginosin) and cyanidin-3-ramnoglucoside(keracyanin). The pericarp coloration of purple rices is controlled by three complimentary genes C (anthocyanin), A(activator) and $Pl^{w}$(purple leaf) genes, while the red rices are expressed by complimentary interaction between Rc(basic substance of pigment) and Rd(distribution of pigment) genes or C and $Pl^{w}$ genes. Recently, the antioxidation and antimutagenic activity in main component of anthocyanin pigments extracted from colored rice were identified. The natural pigments from colored rice can be useful for beverages, cakes, ice scream, cosmetic and so on.

  • PDF

AtMyb56 Regulates Anthocyanin Levels via the Modulation of AtGPT2 Expression in Response to Sucrose in Arabidopsis

  • Jeong, Chan Young;Kim, Jun Hyeok;Lee, Won Je;Jin, Joo Yeon;Kim, Jongyun;Hong, Suk-Whan;Lee, Hojoung
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.351-361
    • /
    • 2018
  • Sucrose is a crucial compound for the growth and development of plants, and the regulation of multiple genes depends on the amount of soluble sugars present. Sucrose acts as a signaling molecule that regulates a proton-sucrose symporter, with its sensor being the sucrose transporter. Flavonoid and anthocyanin biosynthesis are regulated by sucrose, and sucrose signaling can affect flavonoid and anthocyanin accumulation. In the present study, we found a Myb transcription factor affecting accumulation of anthocyanin. AtMyb56 showed an increase in its expression in response to sucrose treatment. Under normal conditions, anthocyanin accumulation was similar between Col-0 (wild type) and atmyb56 mutant seedlings; however, under sucrose treatment, the level of anthocyanin accumulation was lower in the atmyb56 mutant plants than in Col-0 plants. Preliminary microarray analysis led to the investigation of the expression of one candidate gene, AtGPT2, in the atmyb56 mutant. The phosphate translocator, which is a plastidial phosphate antiporter family, catalyzes the import of glucose-6-phosphate (G-6-P) into the chloroplast. AtGPT2 gene expression was altered in atmyb56 seedlings in a sucrose-dependent manner in response to circadian cycle. Furthermore, the lack of AtMyb56 resulted in altered accumulation of maltose in a sucrose-dependent manner. Therefore, the sucrose responsive AtMyb56 regulates AtGPT2 gene expression in a sucrose-dependent manner to modulate maltose and anthocyanin accumulations in response to the circadian cycle.

Studies on the Anthocyanins in Brassica juncea -Part II. Quantitative Determination of Anthocyanins- (재래종(在來種)갓의 Anthocyanin 색소(色素)에 관(關)한 연구(硏究) -[제2보(第二報)] Anthocyanin의 정량(定量)-)

  • Park, Kun-Hyung
    • Applied Biological Chemistry
    • /
    • v.22 no.1
    • /
    • pp.39-41
    • /
    • 1979
  • Succeed to structural elucidation, the anthocyanins in the Korean restive Brassica juncea were quantitatively investigated. And obtained results were as follows: 1. The amount of total anthocyanins showed a little difference according to harvesting season, such as 175.5mg% in spring and 192.7mg% in autumn, as peonidin-3-glucoside. 2. By colored degree of leaf, the amount of total anthocyanins showed 290.2mg% in both side colored, 73.6mg% in one side colored and 40.0mg% in none colored as peonidin-3-glucoside. 3. The characteristic color of fresh Brassica juncea couldn't he detected with naked eyes within the limits of 40mg% of anthocyanin as peonidin-3-glucoside. 4. There were no differences with the harvesting season and the colored degree in the ratio of two kinds of anthocyanins, which was consisted of 57.3% of peonidin-3-glucoside and 44.7% of peonidin-3-galactoside.

  • PDF

Changes of Anthocyanin Contents During Maturity Stages in Black Soybean (검정콩 성숙시기에 따른 안토시아닌 함량 변화)

  • Yi, Eun-Seob;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • This study was performed in order to determine the relationship between anthocyanin generation and seed coat pigmentation in black soybean. Soybean genotypes were analyzed the individual anthocyanin contents by UPLC, which were sampled at 5-day intervals from the 35th day after flowering. Ilpumgeomjeongkong had begun to accumulate anthocyanin on the seed coat previous 35 days after flowering, and in case Heugcheongkong was 30 days. The seed coat coloration in Ilpumgeomjeongkong run on till the 45th day after flowering, and that of Heugcheongkong was between 55 and 60days after flowering. Cyanidin-3-Glucoside (C3G) was formed the earliest and accumulated the greatest among three anthocyanin pigments existed in black soybean. So we could be concluded that C3G affected on seed coat pigmentation greatly than other pigments. The anthocyanin contents at maturity in Ilpumgeomjeongkong was 4.4 times higher than at beginning stage of anthocyanin formation, while those of Heugcheongkong was 2.5 times.

Studies on the Utilization of Plant Pigments -II. Stability of Anthocyanin Pigments in Ganges Amaranth- (식물성(植物性) 색소(色素)의 이용(利用)에 관(關)한 연구(硏究) -II. 꽃잎맨드라미(Amaranthus tricolor L.) Anthocyanin색소(色素)의 안정성(安定性)-)

  • Kim, Kwang-Soo;Lee, Sang-Jik;Yoon, Tai-Heon
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.42-49
    • /
    • 1979
  • In order to evaluate the utility of the anthocyanins of Amaranthys tricolor L. as an edible pigment, the present study was undertaken to investigate the effects of pH. temperature, ascorbic acid, sugars and their degradation products, quercetin, thiourea, sodium pyrophosphate and metal ions on the stability of the anthocyanins in the model systems. The results obtained from this study were as follows. 1. The degradation of total anthocyanins was retarded as the pH levels decreased from 8.0 to 1.0. At pH 1.0, however. the initial degradation reaction proceeded faster than at pH 2.0 to 3.0 2. On heating in buffered aqueous solution at $80^{\circ}C$, the total anthocyanin content was higher at pH 2.0 than other pH levels. Increasing the storage temperature accelerated greatly the pigment degradation. In darkness at $40^{\circ}C$, after 10 days, only 19% of the original amount was left, while at $2^{\circ}C$, under the same conditions of storage, approximately 90% of the pigment was retained. The half-life of the pigment, 63.0 days at $2^{\circ}C$, shortened to 1. 7 days at $40^{\circ}C$. 3. An increase in ascorbic arid concentration from 0. 15 to 0.50 mg/ml lowered the anthocyanin retention. 4. There was no significant difference between glucose and fructose in anthocyanin degradation effect. Furfural was more effective than other sugar degradation products, formic acid or levulinic acid in accelerating anthocyanin breakdown. 5. Neither quercetin nor sodium pyrophosphate had a protective effect on the anthocyanins in the presence of ascorbic acid, while, in the systems 0.5 or 1 mg/ml of thiourea with $150{\;}{\mu}g/ml$ of ascorbic acid, the loss of anthocyanins was significantly reduced. 6. Both mercuric and cupric ions in 30 ppm greatly accelerated anthocyanin degradation.

  • PDF

Photostability of Anthocyanin Extracted from Purple-Fleshed Sweet Potato (자색고구마에서 추출한 anthocyanin의 광안정성)

  • Rhim, Jong-Whan;Lee, Jang-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.346-349
    • /
    • 2002
  • Effect of EDTA, gallic acid, phosphoric acid, propyl gallate and sodium ascorbate on the photostability of anthocyanin extracted from purple-fleshed sweet potato were investigated by measuring the absorbance at 530 nm with a spectrophotometer. White light of 20,000 lux was used to illuminate the pigment and the temperature was $20^{\circ}C$. EDTA and sodium ascorbate were more effective in improving the photostability of the pigment when added at least 100 or 1,000 ppm, respectively.

Identification and quantification of anthocyanin pigments in colored rice

  • Kim, Min-Kyoung;Kim, Han-Ah;Koh, Kwang-Oh;Kim, Hee-Seon;Lee, Young-Sang;Kim, Yong-Ho
    • Nutrition Research and Practice
    • /
    • v.2 no.1
    • /
    • pp.46-49
    • /
    • 2008
  • Anthocyanin pigments from varieties of black, red and wild rice were identified and quantified to evaluate their potential as nutritional function, natural colorants or functional food ingredients. Anthocyanin extraction was conducted with acidified methanol with 0.1M HCl (85:15, v/v) and identification of anthocyanin, aglycone and sugar moieties was conducted by comparison with purified standards by HPLC, Ultraviolet-Visible absorption spectrophotometer and paper chromatography. Black and wild rice showed three different types of pigments by HPLC whereas red rice variety did not show any anthocyanins. Out of three pigments detected, one (peak 2) was characterized as cyanidin-3-glucoside (C3G) by comparison of spectroscopic and chromatographic properties with an authentic standard, and another (peak 3) was tentatively identified as cyanidin-fructoside on the basis of spectroscopic properties with ${\lambda}_{max}$ of aglycone in 1% HCl methanol at 537 nm, electrospray ionization mass spectra with major ions at 449 and 287 m/z and chromatographic properties. But another pigment (peak 1) has not been characterized. The most abundant anthocyanin in black and wild rice was C3G.

Distribution of Floral Anthocyanins in the Species of Genus Hibiscus (Hibiscus속 종내의 anthocyanin 분포)

  • Kim, Jong Hwa;Son, Chang Youl
    • Horticultural Science & Technology
    • /
    • v.16 no.3
    • /
    • pp.381-384
    • /
    • 1998
  • Intersectional differences in anthocyanin composition were observed in a survey of floral anthocyanins of 27 species in genus Hibiscus (Malvaceae). The most common suits of floral anthocyanins were 3-xylosylglucosides and 3-glucosides of delphinidin and cyanidin in species of section Trichospermum, Fucaria, Trionum, Abelmoschus, and Ketmia. Cyanidin 3-sophoroside was the predominant anthocyanin in species of section Lilibiscus. Six common anthocyanidin 3-glucosides and corresponding malonates were detected only in the species of section Bombycella. These intersectional variation coincided generally with proposed sectional boundaries based on morphological characteristics. Anthocyanin composition was more complicated in self-incompatible species than in self-compatible species. The systematic significance of diverse anthocyanin profile was discussed in the aspect of pollination ecology.

  • PDF

Effect of Light on Anthocyanin Biosynthesis in Callus Culture of Purple Sweetpotato (자색고구마 캘러스배양에서 안토시아닌 생합성에 미치는 광의 영향)

  • Park Hyae-Jeong;Kim Jung-Suk;Park Hyeon-Yong
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.307-311
    • /
    • 2005
  • The anthocyanin biosynthesis in callus culture of purple sweet potato (Ipomoea batatas L. cv. Borami) was investigated under growth in different light intensity and light emitting diodes (LED) treatment. Pigmented calli were induced from leaf explants cultured on MS agar medium supplemented with $0.5\;{\mu}M$ 2,4-D under light condition. The color value of these calli extracted after $2{\sim}4$ weeks of cultures was $0.4{\sim}0.5\;mg/mL$. Irradiation intensity is an important factor for anthocyanin biosynthesis. The optimal anthocyanin accumulation occurred on light intensity of 3000 lux. Light irradiation of 3000 lux and blue light treatment for 2 h resulted in a significant enhancement of anthocyanin accumulation. This value was 1.4 fold that the control.