DOI QR코드

DOI QR Code

AtMyb56 Regulates Anthocyanin Levels via the Modulation of AtGPT2 Expression in Response to Sucrose in Arabidopsis

  • Jeong, Chan Young (Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jun Hyeok (Department of Plant Sciences, University of Cambridge) ;
  • Lee, Won Je (Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Jin, Joo Yeon (Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jongyun (Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Hong, Suk-Whan (Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Institute, Chonnam National University) ;
  • Lee, Hojoung (Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2017.09.07
  • Accepted : 2018.01.22
  • Published : 2018.04.30

Abstract

Sucrose is a crucial compound for the growth and development of plants, and the regulation of multiple genes depends on the amount of soluble sugars present. Sucrose acts as a signaling molecule that regulates a proton-sucrose symporter, with its sensor being the sucrose transporter. Flavonoid and anthocyanin biosynthesis are regulated by sucrose, and sucrose signaling can affect flavonoid and anthocyanin accumulation. In the present study, we found a Myb transcription factor affecting accumulation of anthocyanin. AtMyb56 showed an increase in its expression in response to sucrose treatment. Under normal conditions, anthocyanin accumulation was similar between Col-0 (wild type) and atmyb56 mutant seedlings; however, under sucrose treatment, the level of anthocyanin accumulation was lower in the atmyb56 mutant plants than in Col-0 plants. Preliminary microarray analysis led to the investigation of the expression of one candidate gene, AtGPT2, in the atmyb56 mutant. The phosphate translocator, which is a plastidial phosphate antiporter family, catalyzes the import of glucose-6-phosphate (G-6-P) into the chloroplast. AtGPT2 gene expression was altered in atmyb56 seedlings in a sucrose-dependent manner in response to circadian cycle. Furthermore, the lack of AtMyb56 resulted in altered accumulation of maltose in a sucrose-dependent manner. Therefore, the sucrose responsive AtMyb56 regulates AtGPT2 gene expression in a sucrose-dependent manner to modulate maltose and anthocyanin accumulations in response to the circadian cycle.

Keywords

References

  1. Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A., and Lamb, C. (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383-2394. https://doi.org/10.1105/tpc.12.12.2383
  2. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  3. Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462-469. https://doi.org/10.1104/pp.103.027979
  4. Dai, Z.W., Meddar, M., Renaud, C., Merlin, I., Hilbert, G., Delrot, S., and Gomes E. (2014). Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. J. Exp. Bot. 65, 4665-4677.
  5. Devaiah, B.N., Madhuvanthi, R., Karthikeyan, A.S., and Raghothama, K.G. (2009). Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol. Plant 2, 43-58. https://doi.org/10.1093/mp/ssn081
  6. Dias, A.P., Braun, E.L., McMullen, M.D., and Grotewold, E. (2003). Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication. Plant Physiol. 131, 610-620. https://doi.org/10.1104/pp.012047
  7. Ding, Z., Li, S., An, X., Liu, X., Qin, H., and Wang, D. (2009). Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J. Genet. Genomics 36, 17-29. https://doi.org/10.1016/S1673-8527(09)60003-5
  8. Dos Reis, S.P., Lima, A.M., and de Souza, C.R. (2012). Recent molecular advances on downstream plant responses to abiotic stress. Int. J. Mol. Sci. 13, 8628-8647. https://doi.org/10.3390/ijms13078628
  9. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95. https://doi.org/10.1152/physrev.00018.2001
  10. Dubos, C., Gourrierec, J.L., Baudry, A., Huep, G., Lanet, E., Debeaujon, I., Routaboul, J., Alboresi, A., Weisshaar, B., and Lepiniec, L. (2008). MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 55, 940-953 https://doi.org/10.1111/j.1365-313X.2008.03564.x
  11. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573-581. https://doi.org/10.1016/j.tplants.2010.06.005
  12. Eastmond, P.J., and Rawsthorne, S. (2000). Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiol. 122, 767-774. https://doi.org/10.1104/pp.122.3.767
  13. Gonzalez, A., Zhao, M., Leavitt, J.M., and Lloyd, A.M. (2008). Regulation of the anthocyanin biosynthetic pathway by TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 53, 814-827. https://doi.org/10.1111/j.1365-313X.2007.03373.x
  14. Hardie, D.G. (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774-785. https://doi.org/10.1038/nrm2249
  15. Hedbacker, K., and Carlson, M. (2008). SNF1/AMPK pathways in yeast. Front. Biosci. 13, 2408-2420. https://doi.org/10.2741/2854
  16. Hutchings, D., Rawsthorne, S., and Emes, M.J. (2005). Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.). J. Exp. Bot. 56, 577-585. https://doi.org/10.1093/jxb/eri046
  17. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusion: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907.
  18. Jin, H., and Martin, C. (1999). Multifunctionality and diversity within the plant MYB-gene family. Plant Mol. Biol. 41, 577-585. https://doi.org/10.1023/A:1006319732410
  19. Kang, F., and Rawsthorne, S. (1994). Starch and fatty acid synthesis in plastids from developing embryos of oilseed rape (Brassica napus L.). Plant J. 6, 795-805. https://doi.org/10.1046/j.1365-313X.1994.6060795.x
  20. Kammerer, B., Fischer, K., Hilpert, B., Schubert, S., Gutensohn, M., Weber, A., and Flugge, U.I. (1998). Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10, 105-112. https://doi.org/10.1105/tpc.10.1.105
  21. Khodabande, Z., Jafarian, V., and Sariri, R. (2017). Antioxidant activity of Chelidonium majus extract at phenological stage. Appl. Biol. Chem. 60, 497-503. https://doi.org/10.1007/s13765-017-0304-x
  22. Knappe, S., Flugge, U.I., and Fischer, K. (2003). Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol. 131, 1178-1190. https://doi.org/10.1104/pp.016519
  23. Koch, K.E. (1996). Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 509-540. https://doi.org/10.1146/annurev.arplant.47.1.509
  24. Kunz, H.H., Hausler, R.E., Fettke, J., Herbst, K., Niewiadomski, P., Gierth, M., Bell, K., Steup, M., Flugge, U.I., and Schneider, A. (2010). The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol. (Stuttgart) 12, 115-128. https://doi.org/10.1111/j.1438-8677.2010.00349.x
  25. Larronde, F., Krisa, S., Decendit, A., Cheze, C., Deffieux, G., and Merillon, M. (1998). Regulation of polyphenols production in Vitis vinifera cell suspension cultures by sugars. Plant Cell Rep. 17, 946-950. https://doi.org/10.1007/s002990050515
  26. Lee, H., Guo, Y., Ohta, M., Xiong, L., Stevenson, B., and Zhu, J.K. (2002). LOS2, a genetic locus required for cold-responsive gene transcription encodes a bifunctional enolase. EMBO J. 21, 2692-2702. https://doi.org/10.1093/emboj/21.11.2692
  27. Lee, K., Jung, Y.J., Shin, S.Y., and Lee, Y.H. (2016). The natural flavone eupatorin induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Appl. Biol. Chem. 59.2, 193-199. https://doi.org/10.1007/s13765-016-0160-0
  28. Li, L., Ban, Z.J., Li, X.H., Wu, M.Y., Wang, A.L., Jiang, Y.Q., and Jiang, Y.H. (2012). Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.). PLoS One 7, e46070. https://doi.org/10.1371/journal.pone.0046070
  29. Lo Piero, A.R., Puglisi, I., Rapisarda, P., and Petrone, G. (2005). Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J. Agric. Food Chem. 53, 9083-9088. https://doi.org/10.1021/jf051609s
  30. Matus, J.T., Aquea, F., and Arce-Johnson, P. (2008). Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol. 8, 83-98. https://doi.org/10.1186/1471-2229-8-83
  31. McCleary, B.V., Solah, V., and Gibson, T.S. (1994). Quantitative measurement of total starch in cereal flours and products. J. Cereal Sci. 20, 51-58 https://doi.org/10.1006/jcrs.1994.1044
  32. Nguyen, N.H., Jeong, C.Y., Lee, W.J., and Lee, H. (2016). Identification of a novel Arabidopsis mutant showing sensitivity to histone deacetylase inhibitors. Appl. Biol. Chem. 59, 855-860. https://doi.org/10.1007/s13765-016-0236-x
  33. Niewiadomski, P., Knappe, S., Geimer, S., Fischer, K., Schulz, B., Unte, U.S., Rosso, M.G., Ache, P., Flugge, U.I., and Schneider, A. (2005). The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 17, 760-775. https://doi.org/10.1105/tpc.104.029124
  34. Ogata, K., Morikawa, S., Nakamura, H., Sekikawa, A., Inoue, T., Kanai, H., Sarai, A., Ishii, S., and Nishimura, Y. (1994). Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79, 639-648. https://doi.org/10.1016/0092-8674(94)90549-5
  35. Ohto, M.A., Onai, K., Furukawa, Y., Aoki, E., Araki, T., and Nakamura, K. (2001). Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol. 127, 252-261. https://doi.org/10.1104/pp.127.1.252
  36. Polge, C., and Thomas, M. (2007). SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci. 12, 20-28.
  37. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R. (2004). When defense pathways collide, the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683-1696. https://doi.org/10.1104/pp.103.033431
  38. Rolland, F., Moore, B., and Sheen, J. (2002). Sugar sensing and signaling in plants. Plant Cell (Suppl) 14, S185-S205. https://doi.org/10.1105/tpc.010455
  39. Rolletschek, H., Nguyen, T.H., Hausler, R.E., Rutten, T., Gobel, C., Feussner, I., Radchuk, R., Tewes, A., Claus, B., Klukas, C., et al. (2007). Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage. Plant J. 51, 468-484. https://doi.org/10.1111/j.1365-313X.2007.03155.x
  40. Rook, F., and Bevan, M.W. (2003). Genetic approaches to understanding sugar response pathways. J. Exp. Bot. 54, 495-501. https://doi.org/10.1093/jxb/erg054
  41. Rosinski, J.A., and Atchley, W.R. (1998). Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J. Mol. Evol. 46, 74-83. https://doi.org/10.1007/PL00006285
  42. Ross, J.A., and Kasum, C.M. (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22, 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
  43. Roubelakis-Angelakis, K.A., and Kliewer, W.M. (1986). Effects of exogenous factors on phenylalanine ammonia-lyase activity and accumulation of anthocyanins and total phenolics in grape berries. Am. J. Enol. Viticult. 37, 275-280.
  44. Seo, P.J., Xiang, F., Qiao, M., Park, J.Y., Lee, Y.N., Kim, S.G., Lee, Y.H., Park, W.J., and Park, C.M. (2009). The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol. 151, 275-289. https://doi.org/10.1104/pp.109.144220
  45. Shi, M.Z., and Xie, D.Y. (2010). Features of anthocyanin biosynthesis in pap1-D and wild-type Arabidopsis thaliana plants grown in different light intensity and culture media conditions. Planta 231, 1385-1400. https://doi.org/10.1007/s00425-010-1142-9
  46. Smeekens, S. (2000). Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 49-81. https://doi.org/10.1146/annurev.arplant.51.1.49
  47. Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., and Perata, P. (2006). Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140, 637-646. https://doi.org/10.1104/pp.105.072579
  48. Stracke, R., Werber, M., and Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447-456. https://doi.org/10.1016/S1369-5266(00)00199-0
  49. Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M., and Smeekens, S. (2005). Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 139, 1840-1852. https://doi.org/10.1104/pp.105.066688
  50. Tohge, T., Nishiyama, Y., and Hirai, M.Y. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 43, 218-235.
  51. Tsukaya, H., Ohshima, T., Naito, S., Chino, M., and Komeda, Y. (1991). Sugar-dependent expression of the CHS-A gene for chalcone synthase from petunia in transgenic Arabidopsis. Plant Physiol. 97, 1414-1421. https://doi.org/10.1104/pp.97.4.1414
  52. Ubi, B.E., Honda, C., Bessho, H., Kondo, S., Wada, M., Shozo, K., and Moriguchi, T. (2006). Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci. 170, 571-578. https://doi.org/10.1016/j.plantsci.2005.10.009
  53. Wu, H.C., and Jinn, T.L. (2012). Oscillation regulation of Ca2+/calmodulin and heat-stress related genes in response to heat stress in rice (Oryza sativa L.). Plant Signal. Behav. 7, 1056-1057. https://doi.org/10.4161/psb.21124
  54. Yang, H., and Shin, Y. (2017). Antioxidant compounds and activities of edible roses (Rosa hybrida spp.) from different cultivars grown in Korea. Appl. Biol. Chem. 60, 129-136. https://doi.org/10.1007/s13765-017-0261-4
  55. Yanhui, C., Xiaoyuan, Y., Kun, H., Meihua, L., Jigang, L., Zhaofeng, G., Zhigiang, L., Yunfei, Z., Xiaoxiao, W., Xiaoming, Q., et al. (2006). The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol. 60, 107-124. https://doi.org/10.1007/s11103-005-2910-y
  56. Zhang, L., Hausler, R.E., Greiten, C., Hajirezaei, M.R., Haferkamp, I., Neuhaus, H.E., Flugge, U.I., and Ludewig, F. (2008). Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol. J. 6, 453-464. https://doi.org/10.1111/j.1467-7652.2008.00332.x
  57. Zhang, L.C., Zhao, G.Y., Jia, J.Z., Liu, X., and Kong, X.Y. (2012). Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J. Exp. Bot. 63, 203-214. https://doi.org/10.1093/jxb/err264

Cited by

  1. Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen vol.10, pp.None, 2018, https://doi.org/10.3389/fpls.2019.00884
  2. Accumulation of Anthocyanin and Its Associated Gene Expression in Purple Tumorous Stem Mustard (Brassica juncea var. tumida Tsen et Lee) Sprouts When Exposed to Light, Dark, Sugar, and Methyl Jasmonat vol.67, pp.3, 2018, https://doi.org/10.1021/acs.jafc.8b04706
  3. Two papaya MYB proteins function in fruit ripening by regulating some genes involved in cell‐wall degradation and carotenoid biosynthesis vol.100, pp.12, 2018, https://doi.org/10.1002/jsfa.10484
  4. Characterization of Arabidopsis thaliana R2R3 S23 MYB Transcription Factors as Novel Targets of the Ubiquitin Proteasome-Pathway and Regulators of Salt Stress and Abscisic Acid Response vol.12, pp.None, 2018, https://doi.org/10.3389/fpls.2021.629208
  5. Transcriptome Analysis Revealed the Mechanism by Which Exogenous ABA Increases Anthocyanins in Blueberry Fruit During Veraison vol.12, pp.None, 2018, https://doi.org/10.3389/fpls.2021.758215
  6. Interpreting machine learning models to investigate circadian regulation and facilitate exploration of clock function vol.118, pp.32, 2018, https://doi.org/10.1073/pnas.2103070118
  7. Rhythmical redox homeostasis can be restored by exogenous melatonin in hulless barley (Hordeum vulgare L.var. nudum) under cold stress vol.194, pp.None, 2022, https://doi.org/10.1016/j.envexpbot.2021.104756