DOI QR코드

DOI QR Code

Identification of the Regulatory Region Responsible for Vascular Tissue-Specific Expression in the Rice Hd3a Promoter

  • Pasriga, Richa (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University) ;
  • Cho, Lae-Hyeon (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University) ;
  • Yoon, Jinmi (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University) ;
  • An, Gynheung (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
  • Received : 2017.11.24
  • Accepted : 2018.01.08
  • Published : 2018.04.30

Abstract

Flowering time is determined by florigens. These genes include, Heading date 3a (Hd3a) and Rice FT 1 (RFT1) in rice, which are specifically expressed in the vascular tissues of leaves at the floral transition stage. To study the cis-regulatory elements present in the promoter region of Hd3a, we generated transgenic plants carrying the 1.75-kb promoter fragment of Hd3a that was fused to the ${\beta}$-glucuronidase (GUS) reporter gene. Plants expressing this construct conferred a vascular cell-specific expression pattern for the reporter gene. However, GUS was expressed in leaves at all developmental stages, including the early seedling stage when Hd3a was not detected. Furthermore, the reporter was expressed in roots at all stages. This suggests that the 1.75-kb region lackings cis-elements that regulate leaf-specific expression at the appropriate developmental stages. Deletion analyses of the promoter region indicated that regulatory elements determining vascular cell-specific expression are present in the 200-bp region between -245 bp and -45 bp from the transcription initiation site. By transforming the Hd3a-GUS construct to rice cultivar 'Taichung 65' which is defective in Ehd1, we observed that Ehd1 is the major regulatory element that controls Hd3a promoter activity.

Keywords

References

  1. Adrian, J., Farrona, S., Reimer, J.J., Albani, M.C., Coupland, G., and Turck, F. (2010). Cis-regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22, 1425-1440. https://doi.org/10.1105/tpc.110.074682
  2. Alsterfjord, M., Sehnke, P.C., Arkell, A., Larsson, H., Svennelid, F., Rosenquist, M., Ferl, R.J., Sommarin, M., and Larsson, C. (2004). Plasma membrane $H^+$-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/$H^+$ -ATPase interaction. Plant Cell Physiol. 45, 1202-1210. https://doi.org/10.1093/pcp/pch136
  3. An, G., Ebert, P.R., Mitra, A., and Ha, S.B. (1989). Binary vectors. In Plant Molecular Biology Manual, (Dordrecht: Kluwer Academic Publisher), A3: pp. 1-19.
  4. An, H.L., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., et al. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 3615-3626. https://doi.org/10.1242/dev.01231
  5. Asano, T., Kusano, H., Okuda, T., Kubo, N., Shimada, H., and Kadowaki, K. (2002). Rpp16 and Rpp17, from a common origin, have different protein characteristics but both genes are predominantly expressed in rice phloem tissues. Plant Cell Physiol. 43, 668-674. https://doi.org/10.1093/pcp/pcf083
  6. Brears, T., Walker, E.L., and Coruzzi, G.M. (1991). A promoter sequence involved in cell-specific expression of the pea glutamine synthetase GS3A gene in organs of transgenic tobacco and alfalfa. Plant J. 1, 235-244. https://doi.org/10.1111/j.1365-313X.1991.00235.x
  7. Chen, L.Q., Qu, X.Q., Hou, B.H., Sosso, D., Osorio, S., Fernie, A.R., and Frommer, W.B. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335, 207-211. https://doi.org/10.1126/science.1213351
  8. Cho, L.H., Yoon, J., Pasriga, R., and An, G. (2016). Homodimerization of Ehd1 is required to induce flowering in rice. Plant Physiol. 170, 2159-2171. https://doi.org/10.1104/pp.15.01723
  9. Cho, L.H., Yoon, J., and An, G. (2017). The control of flowering time by environmental factors. Plant J. 90, 708-719. https://doi.org/10.1111/tpj.13461
  10. Choi, S.C., Lee, S., Kim, S.R., Lee, Y.S., Liu, C., Cao, X., and An, G. (2014). Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with Early heading date3. Plant Physiol. 164, 1326-1337. https://doi.org/10.1104/pp.113.228049
  11. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033. https://doi.org/10.1126/science.1141752
  12. DeWitt, N.D., Harper, J.F., and Sussman, M.R. (1991). Evidence for a plasma membrane proton pump in phloem cells of higher plants. Plant J. 1, 121-128. https://doi.org/10.1111/j.1365-313X.1991.00121.x
  13. Dinant, S., Ripoll, C., Pieper, M., and David, C. (2004). Phloem specific expression driven by wheat dwarf geminivirus V-sense promoter in transgenic dicotyledonous species. Physiol. Plant. 121, 108-116. https://doi.org/10.1111/j.0031-9317.2004.00296.x
  14. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hd1. Genes Dev. 18, 926-936. https://doi.org/10.1101/gad.1189604
  15. Endo, M., Nakamura, S., Araki, T., Mochizuki, N., and Nagatani, A. (2005). Phytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles. Plant Cell 17, 1941-1952. https://doi.org/10.1105/tpc.105.032342
  16. Giakountis, A., and Coupland, G. (2008). Phloem transport of flowering signals. Curr. Opin. Plant Biol. 11, 687-694. https://doi.org/10.1016/j.pbi.2008.10.003
  17. Gottwald, J.R., Krysan, P.J., Young, J.C., Evert, R.F., and Sussman, M.R. (2000). Genetic evidence for the in planta role of phloemspecific plasma membrane sucrose transporters. Proc. Natl. Acad. Sci. USA 97, 13979-13984. https://doi.org/10.1073/pnas.250473797
  18. Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719-722. https://doi.org/10.1038/nature01549
  19. Hernandez-Garcia, C.M., and Finer, J.J. (2014). Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 217, 109-119.
  20. Hori, K., Ogiso-Tanaka, E., Matsubara, K., Yamanouchi, U., Ebana, K., and Yano, M. (2013). Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J. 76, 36-46.
  21. Ishikawa, R., Tamaki, S., Yokoi, S., Inagaki, N., Shinomura, T., Takano, M., and Shimamoto, K. (2005). Suppression of the floral activator gene Hd3a is the principal cause of the night break effect in rice. Plant Cell 17, 3326-3336. https://doi.org/10.1105/tpc.105.037028
  22. Imaizumi, T., and Kay, S.A. (2006). Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 11, 550-558. https://doi.org/10.1016/j.tplants.2006.09.004
  23. Izawa, T., Oikawa, T., Sugiyama, N., Tanisaka, T., Yano, M., and Shimamoto, K. (2002). Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 16, 2006-2020. https://doi.org/10.1101/gad.999202
  24. Jaeger, K.E., and Wigge, P.A. (2007). FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17, 1050-1054. https://doi.org/10.1016/j.cub.2007.05.008
  25. Kinoshita, T., Ono, N., Hayashi, Y., Morimoto, S., Nakamura, S., Soda, M., Kato, Y., Ohnishi, M., Nakano, T., Inoue, S., et al. (2011). Flowering locus T regulates stomatal opening. Curr. Biol. 21, 1232-1238. https://doi.org/10.1016/j.cub.2011.06.025
  26. Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135, 767-774. https://doi.org/10.1242/dev.008631
  27. Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450. https://doi.org/10.1242/dev.040170
  28. Krieger, U., Lippman, Z.B., and Zamir, D. (2010). The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42, 459-463. https://doi.org/10.1038/ng.550
  29. Lam, E., and Chua, N.H. (1989). ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1, 1147-1156. https://doi.org/10.1105/tpc.1.12.1147
  30. Lee, Y.S., and An, G. (2015). Regulation of flowering time in rice. J. Plant Biol. 58, 353-360. https://doi.org/10.1007/s12374-015-0425-x
  31. Lee, S., Jeon, J.S., Jung, K.H., and An, G. (1999). Binary vectors for efficient transformation of rice. J. Plant Biol. 42, 310-316. https://doi.org/10.1007/BF03030346
  32. Lee, Y.S., Jeong, D.H., Lee, D.Y., Yi, J., Ryu, C.H., Kim, S.L., Jeong, H.J., Choi, S.C., Jin, P., Yang, J., et al. (2010). OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J. 63, 18-30.
  33. Lee, Y.S., Lee, D.Y., Cho, L.H., and An, G. (2014). Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice. 7, 31. https://doi.org/10.1186/s12284-014-0031-4
  34. Lifschitz, E., Eviatar, T., Rozman, A., Shalit, A., Goldshmidt, A., Amsellem, Z., Alvarez, J.P., and Eshed, Y. (2006). The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 103, 6398-6403. https://doi.org/10.1073/pnas.0601620103
  35. Lin, M.K., Belanger, H., Lee, Y.J., Varkonyi-Gasic, E., Taoka, K.I., Miura, E., Xoconostle-Cazares, B., Gendler, K., Jorgensen, R.A., Phinney, B., et al. (2007). FLOWERING LOCUS T protein may act as the longdistance florigenic signal in the cucurbits. Plant Cell 19, 1488-1506. https://doi.org/10.1105/tpc.107.051920
  36. Ma, L., Zhang, D., Miao, Q., Yang, J., Xuan, Y., and Hu, Y. (2017). Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant Cell Physiol. 58, 863-873. https://doi.org/10.1093/pcp/pcx040
  37. Matsubara, K., Yamanouchi, U., Nonoue, Y., Sugimoto, K., Wang, Z.X., Minobe, Y., and Yano, M. (2011). Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J. 66, 603-612. https://doi.org/10.1111/j.1365-313X.2011.04517.x
  38. Medberry, S.L., Lockhart, B.E., and Olszewski, N.E. (1992). The Commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell 4, 185-192. https://doi.org/10.1105/tpc.4.2.185
  39. Meng, X., Muszynski, M.G., and Danilevskayaa, O.N. (2011). The FTlike ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23, 942-960. https://doi.org/10.1105/tpc.110.081406
  40. Monna, L., Lin, X., Kojima, S., Sasaki, T., and Yano, M. (2002). Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor. Appl. Genet. 104, 772-778. https://doi.org/10.1007/s00122-001-0813-0
  41. Notaguchi, M., Abe, M., Kimura, T., Daimon, Y., Kobayashi, T., Yamaguchi, A., Tomita, Y., Dohi, K., Mori, M., and Araki, T. (2008). Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol. 49, 1645-1658. https://doi.org/10.1093/pcp/pcn154
  42. Pageau, K., Reisdorf-Cren, M., Morot-Gaudry, J.F., and Masclaux-Daubresse, C. (2006). The two senescence-related markers GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilisation are differentially regulated during pathogen attack, by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. J. Exp. Bot. 57, 547-557. https://doi.org/10.1093/jxb/erj035
  43. Pin, P.A., and Nilsson, O. (2012). The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ. 35, 1742-1755. https://doi.org/10.1111/j.1365-3040.2012.02558.x
  44. Ryu, C.H., Lee, S., Cho, L.H., Kim, S.L., Lee, Y.S., Choi, S.C., Jeong, H.J., Yi, J., Park, S.J., Han, C.D., et al. (2009). OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ. 32, 1412-1427. https://doi.org/10.1111/j.1365-3040.2009.02008.x
  45. Schmulling, T., Schell, J., and Spena, A. (1989). Promoters of the rolA, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1, 665-670. https://doi.org/10.1105/tpc.1.7.665
  46. Stadler, R., and Sauer, N. (1996). The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells. Bot. Acta 109, 299-306. https://doi.org/10.1111/j.1438-8677.1996.tb00577.x
  47. Scofield, G.N., Aoki, N., Hirose, T., Takano, M., Jenkins, C.L.D., and Furbank, R.T. (2007). The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J. Exp. Bot. 58, 483-495.
  48. Takada, S., and Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15, 2856-2865. https://doi.org/10.1105/tpc.016345
  49. Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316, 1033-1036. https://doi.org/10.1126/science.1141753
  50. Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., Tamaki, S., et al. (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332-335. https://doi.org/10.1038/nature10272
  51. Tsuji, H., Taoka, K., and Shimamoto, K. (2011). Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr. Opin. Plant Biol. 14, 45-52. https://doi.org/10.1016/j.pbi.2010.08.016
  52. Tsuji, H., Tachibana, C., Tamaki, S., Taoka, K., Kyozuka, J., and Shimamoto, K. (2015). Hd3a promotes lateral branching in rice. Plant J. 82, 256-266. https://doi.org/10.1111/tpj.12811
  53. Werr, W., Frommer, W.B., Maas, C., and Starlinger, P. (1985). Structure of the sucrose synthase gene on chromosome 9 of Zea mays L. EMBO J. 4, 1373-1380.
  54. Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., et al. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761-767. https://doi.org/10.1038/ng.143
  55. Yang, J., Lee, S., Hang, R., Kim, S.R., Lee, Y.S., Cao, X., Amasino, R., and An, G. (2013). OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J. 73, 566-578. https://doi.org/10.1111/tpj.12057
  56. Yano, M., and Sasaki, T. (1997). Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35, 145-153. https://doi.org/10.1023/A:1005764209331
  57. Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y., et al. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473-2483. https://doi.org/10.1105/tpc.12.12.2473
  58. Yin, Y., and Beachy, R.N. (1995). The regulatory regions of the rice tungro bacilliform virus promoter and interacting nuclear factors in rice (Oryza sativa L.). Plant J. 7, 969-980. https://doi.org/10.1046/j.1365-313X.1995.07060969.x
  59. Yin, Y., Chen, L., and Beachy, R.N. (1997). Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant J. 12, 1179-1188. https://doi.org/10.1046/j.1365-313X.1997.12051179.x
  60. Yoon, J., Cho, L.H., Kim, S.L., Choi, H., Koh, H.J., and An, G. (2014). The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J. 79, 717-728. https://doi.org/10.1111/tpj.12581
  61. Yoon, J., Cho, L.H., Antt, H.W., Koh, H.J., and An, G. (2017). KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiol. 174, 312-325. https://doi.org/10.1104/pp.17.00298
  62. Zhao, J., Huang, X., Ouyang, X., Chen, W., Chen, W., Du, A., Zhu, L., Wang, S., Deng, X.W., and Li, S. (2012). OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING 3, regulates rice circadian rhythm and photoperiodic flowering. PloS One 7, e43705. https://doi.org/10.1371/journal.pone.0043705

Cited by

  1. Loss-of-Function Alleles of Heading date 1 ( Hd1 ) Are Associated With Adaptation of Temperate Japonica Rice Plants to the Tropical Region vol.9, pp.None, 2018, https://doi.org/10.3389/fpls.2018.01827
  2. Overexpression of RICE FLOWERING LOCUS T 1 (RFT1) Induces Extremely Early Flowering in Rice vol.42, pp.5, 2018, https://doi.org/10.14348/molcells.2019.0009
  3. PhePEBP family genes regulated by plant hormones and drought are associated with the activation of lateral buds and seedling growth in Phyllostachys edulis vol.39, pp.8, 2019, https://doi.org/10.1093/treephys/tpz056