• Title/Summary/Keyword: antennas

Search Result 2,050, Processing Time 0.025 seconds

Fabrication and Characterization of Wideband HTS Antennas for Satellite to Satellite Communication (위성 대 위성 통신용 광대역 HTS 안테나 제작 및 특성 해석)

  • 정동철
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.573-577
    • /
    • 2002
  • We designed wideband HTS antennas which consists of two triangle -radiation patches using a $YBa_2Cu_3O_{7-X}$ (YBCO) superconducting thin film. The major limitation of high-Tc superconducting (HTS) microstrip antennas is the narrow bandwidth due to the high Q and thin substrate. Defining bandwidth as the frequency range over which standing wave ratio (SWR) 2:1 or less, HTS antenna bandwidths are typically 0.85 % to 1.1 %. Thus considerable effort has been focused on developing antennas for broadband operation. To calculate input impedance and design of the broadband HTS antennas a moment method technique was used. The HTS antenna fabricated in this work was designed for K-band, which is useful band for satellite to satellite communications. The bandwidth obtained was a significant 6.7 % and the other measured performance of our HTS antenna, including the bandwidth, radiation Pattern, efficiency, standing wave ratio (SWR) and return losses was reported.

Fabrication and Characterization of Wideband HTS Antennas for Satellite to Satellite Communication (위성 대 위성 통신용 광대역 HTS 안테나 제작 및 특성 해석)

  • 정동철;최명호;황종선;강형곤;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.523-526
    • /
    • 2002
  • We designed wideband HTS antennas which consists of two triangle-radiation patches using a YBa$_2$Cu$_3$O$\sub$7-x/ (YBCO) superconducting thin film. The major limitation of high-Tc superconducting (HTS) microstrip antennas is the narrow bandwidth due to the high Q and thin substrate. Defining bandwidth as the frequency range over which standing wave ratio (SWR) 2:1 or less, HTS antenna bandwidths are typically 0.85% to 1.1%. Thus considerable effort has been focused on developing antennas for broadband operation. To calculate input impedance and design of the broadband HTS antennas a moment method technique was used. The HTS antenna fabricated in this work was designed for K-band, which is useful band for satellite-to-satellite communications. The bandwidth obtained was a significant 6.7% and the other measured performance of our HTS antenna, including the bandwidth, radiation Pattern, efficiency, standing wave ratio (SWR) and return losses was reported.

  • PDF

A Study on the Characteristics of Dual-band Plastic Chip Antenna for Mobile Terminal using the Foamex Materials (Foamex 매질을 이용한 이동통신 단말기용 듀얼밴드 플라스틱 칩 안테나 특성에 관한 연구)

  • Lee, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.130-135
    • /
    • 2005
  • In this papers, we made study for plastic chip antenna, the plastic is Foamex with the circle of PVC and its electric characteristics are dielectric constant 1.9, insulation intensity 112 KV/cm. The proposed antenna is same as the conventional antennas are usually constructed with ceramic chip, which are not fragile in nature and don't tend to break easily. Therefore the proposed antenna with its advantage is attractive for application in mobile antenna. In order to valid the proposed papers, it is implemented the antennas of four types and experimented. From the results, we conformed that the antennas are operated at the dual band which is cellular band and Korea-PCS band. And the gain of the antennas has about above -2 dB and the pattern is same as conventional antennas. From this papers, the realized antennas using Foamex material will be application for mobile phone antenna.

The Impedance Characteristics of Verical Antennas Over a Finite Image Plane (영상면상의 직선형 안테나의 임피이던스 특성)

  • 양인용;조성호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.3 no.3
    • /
    • pp.2-13
    • /
    • 1966
  • The impedance characteristics of vertical antennas over a finite image plane were analyzed and measured. Two kinds of image plane, one rectangular and the other circular, were used for the mesurements. And the length of antennas was varied at fixed frequency. All kinds of terminal zone effects which possible raise questions because of antenna mounting system were discussed. It is observed from the results that the measured impedance of antennas over a comparativley large rectangular plane is approximatly identical with the theoretical value, and also the impedance of antennas over a comparatively small circular plane had similar characteristics to a comparatively thick antennas over an inifinite image plane.

  • PDF

Identifying the Appropriate Position on the Ground Plane for MIMO Antennas Using Characteristic Mode Analysis

  • Won, Jusun;Jeon, Sinhyung;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.119-125
    • /
    • 2016
  • In this paper, a method for identifying the appropriate position on the ground plane for antennas is proposed based on the current correlation coefficient ($C^3$). This method explains that the mutual coupling between antennas when locating several antennas on the same ground plane is necessary. Given the current distribution on the ground plane induced by each antenna, easily estimating the coupling between antennas is possible. This paper also demonstrates that the proposed method can be used in the design of a multi-input multi-output system. The measured data are in good agreement with the simulation results.

HARQ Switching Metric of MIMO-OFDM Systems using Joint Tx/Rx Antenna Scheduling (송.수신 안테나 스케줄링에 기반한 MIMO-OFDM 시스템의 HARQ 스위칭 기법)

  • Kim, Kyoo-Hyun;Knag, Seoung-Won;Chang, Kyung-Hi;Jeong, Byung-Jang;Chung, Hyun-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.519-536
    • /
    • 2007
  • In this paper, we combine the Hybrid-Automatic Repeat reQuest (HARQ) algorithm with joint Tx and Rx antenna selection based on the reliability of the individual antennas links. The cyclic redundancy check (CRC) is applied on the data before being encoded using the Turbo encoder. In the receiver the CRC is used to detect errors of each antenna stream and to decide whether a retransmission is required or not. The receiver feeds back the transmitter with the Tx antennas ordering and the acknowledgement of each antenna (ACK or NACK). If the number of ACK antennas is higher than the NACK antennas, then the retransmission takes place from the ACK antennas using the Chase Combining (CC). If the number of the NACK antennas is higher than the ACK antennas then the ACK antennas are used to retransmit the data streams using the CC algorithm and additional NACK antennas are used to retransmit the remaining streams using Incremental Redundancy (IR, i.e. the encoder rate is reduced). Furthermore, the HARQ is used with the I-BLAST (Iterative-BLAST) which grantees a high transmission rate.

Performance of Energy Detection Spectrum Sensing with Delay Diversity for Cognitive Radio System

  • Kim, Eun-Cheol;Koo, Sung-Wan;Kim, Jin-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2009
  • In this paper, a new spectrum sensing method based on energy detection is proposed and analyzed in a cognitive radio(CR) system. We employ a delay diversity receiver for sensing the primary user's spectrum with reasonable cost and complexity. Conventional CR with the receiver equipping multiple antennas requires additional hardware and space for installing multiple antennas in accordance with increase in the number of antennas. If the number of antennas increases, detection probability as well as hardware complexity and cost rise. Then, it is difficult to make a primary user detector practically. Therefore, we adopt a delay diversity receiver for solving problems of the conventional spectrum detector utilizing multiple antennas. We derive analytical expressions for the spectrum sensing performance of the proposed system. From the simulation results, it is demonstrated that the primary user detector with the delay diversity receiver has almost half the complexity and shows similar or improved performance as compared with that employing multiple antennas. Therefore, the proposed spectrum sensing structure can be a practical solution for enhancing the detection capacity in CR system operations. The results of this paper can be applied to legacy CR systems with simple modifications.

Design of Microstrip array antennas for Tx/Rx dual operation at X-band (X-band 송/수신 겸용 마이크로스트립 배열 안테나 설계)

  • 노행숙;윤재승;전순익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1299-1305
    • /
    • 2002
  • Tx/Rx dual microstrip array antennas for satellite communications are designed, fabricated, and measured in this paper. They have a Right Handed Circular Polarization (RHCP) for Tx and Left Handed Circular Polarization (LHCP) for Rx. Two stacked patches are used for wideband characteristics and corner-truncated square patches are adopted for a circular polarization. To enhance bandwidth characteristics of a circular polarization, 2${\times}$1 sequential rotation mays are applied. From the measured results, 8${\times}$1 microstrip may antennas have a good agreement with those of the simulation. Therefore the array antennas are applicable to satellite communication antennas, active phased may antennas, and radiators in other antennas.

Analysis of Optimum Antenna Placement Considering Interference Between Airborne Antennas Mounted on UAV (무인항공기 탑재 안테나 간 간섭을 고려한 안테나 최적 위치 분석)

  • Choi, Jaewon;Kim, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.32-40
    • /
    • 2015
  • In this paper, the optimum antenna placement is analyzed by considering the interference between airborne antennas mounted on the unmanned aerial vehicle(UAV). The analysis is implemented by selecting the antennas that the distance and operational frequency band between airborne antennas is close to each other among the omni-directional antennas. The analyzed antennas are the control datalink, TCAS(Traffic Collision & Avoidance System), IFF(Identification Friend or Foe), GPS(Global Positioning System), and RALT(Radar ALTimeter) antennas. There are three steps for the optimum antenna placement analysis. The first step is selecting the antenna position having the optimum properties by monitoring the variation of radiation pattern and return loss by the fuselage of UAV after selecting the initial antenna position considering the antenna use, type, and radiation pattern. The second one is analyzing the interference strength between airborne antennas considering the coupling between airborne antennas, spurious of transmitting antenna, and minimum receiving level of receiving antenna. In case of generating the interference, the antenna position without interference is selected by analyzing the minimum separation distance without interference. The last one is confirming the measure to reject the frequency interference by the frequency separation analysis between airborne antennas in case that the intereference is not rejected by the additional distance separation between airborne antennas. This analysis procedure can be efficiently used to select the optimum antenna placement without interference by predicting the interference between airborne antennas in the development stage.

Small Antennas (소형 안테나)

  • Kim, Ki-Chai
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.79-83
    • /
    • 1992
  • The demand for small and low-profile antennas has become quite strong, especially in mobile communications. This article presents an brief introduction to the fundsmental characteristics, design, and measurement of typical small antennas and low-profile antennas.

  • PDF