• Title/Summary/Keyword: antenna measurement

Search Result 746, Processing Time 0.026 seconds

2.6 GHz-Band MIMO Omni Antenna Having Folded Configuration (폴디드 구조를 갖는 2.6 GHz 대역 MIMO 무지향 안테나)

  • Lee, Su-Won;Lee, Jae-Du;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 2015
  • In this paper, we propose 2.6 GHz single band dual polarization MIMO omni antenna for in-building applications. The proposed antenna operates at 2.6 GHz single LTE band, Up-link 2.52~2.54 GHz and Down-link 2.64~2.66 GHz. Horizontal and vertical polarizations of the antenna has been, respectively, constructed by the synthesis of four folded loop antennas and the folded monopole antenna. The height of the MIMO omni-directional antenna is minimized to be less than ${\lambda}/13.5$ from the ground. The measurement results show excellent MIMO omni antenna performance of 2.85 dBi vertical polarization gain, 2.29 dBi horizontal polarization gain, and 19.25 dB port isolation.

A Reconfigurable Circularly Polarized Microstrip Antenna Based on Alternating Stub-Slot Perturbation (교차형 스터브-슬롯 섭동 구조를 이용한 원형 편파 재구성 마이크로스트립 안테나)

  • Lee, Dong-Hyo;Lim, Eunsook;Kim, Il-Woong;Yang, Hyung-Mo;Ahn, Sang-Il;Pyo, Seongmin
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.121-126
    • /
    • 2015
  • This paper proposes a novel reconfigurable microstrip antenna based on alternating a perturbation structure to achieve circular polarization diversity. The proposed antenna consists of an annular ring microstrip radiator for simultaneously loading stub and slot perturbations which support right- and left-handed circular polarization senses and two PIN diodes for choosing the operating polarization sense. By controlling the states of two PIN diodes between perturbing slot and stub at one diagonal corner of the radiator, reconfigurable circular polarization senses of the proposed antenna are successfully obtained and alternated. The proposed antenna has been theoretically analyzed and experimentally demonstrated at 2.4 GHz of S-band for satellite communication system. The simulation and measurement results of the proposed antenna show in good agreement with the reflection coefficients, axial-ratios, realized antenna gains, and radiation patterns.

Implementation of Broadband Printed Sleeve Monopole Antenna (광대역 프린티드 슬리브 모노폴 안테나의 구현)

  • Choe, Gwang-Je;Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.245-250
    • /
    • 2014
  • This paper presents the broadband printed sleeve-monopole antenna implementing the sleeve monopole structure in the form of PCB. In the proposed antenna, the antenna performance was improved by the diameter variation of the radiator, the length variation of the sleeve, and the variation of the diameter of the sleeve conductor. HFSS simulator of ANSYS corp. was used in order to confirm the antenna parameter characteristic. According to the simulation results, the VSWR was less than 2 for the range of 2.12GHz~3.18GHz. The frequency bandwidth is 1.08GHz. The frequency range of the actual fabricated antenna was 2.0GHz~3.55GHz, the frequency bandwidth is 1.55GHz. The maximum gain was 1.64dBi. The proposed antenna was $56{\times}5{\times}1.6mm$ in size. The utilization possibility of the broadband printed sleeve-monopole antenna could be confirmed according to compare and analyze the simulation and measurement data.

Multi-Current Distributed Folded Monopole Antenna for Triple Band Mobile Phone Handset (3중 대역 휴대폰 단말기용 다중 전류 분포 폴디드 모노폴 안테나)

  • Son, Tae-Ho;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1189-1195
    • /
    • 2007
  • We design and fabricate, in this parer, a triple band folded monopole antenna for the folder type mobile phone handset that can be served GSM/DCS/USPCS mobile phone system. Antenna structure is modified meander shape which is obtained both extension of antenna physical length for GSM band and same directional multi-currents flowing on the antenna conductor surface for DCS/USPCS band. This antenna has as good performances as high radiation resistance and gain increment, and would be applied to mobile phone handset that is not able to be performed by internal antenna. By measurement, fabricated antenna by the press process shows under VSWR 3:1 at closed folder state and 2:1 at opened folder state over whole GSM/DCS/USPCS band, and has maximum gain as -0.02 dBi for GSM, +0.2 dBi for DCS, +0.78 dBi for USPCS band with almost omnidirectional H-plane radiation pattern.

A Design of High Gain Sequentially Rotated Array Microstrip Antenna (고 이득 순차 회전 배열 마이크로스트립 안테나의 설계)

  • Park, Byoung-Woo;Han, Jeoug-Se
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.707-712
    • /
    • 2008
  • In this paper, the sequentially rotated array(SRA) antenna with 256 elements applicable for satellite broadcasting reception was designed by arraying this triple(4+8+4 element) SRA antenna as a sub-array antenna. The structure of a triple SRA antenna is a combination of three coaxial shells composed with 4 elements of inner shell and 8 elements of middle shell and 4 elements of outer shell. In accordance with the optimum design rules for realizing a high gain antenna, the sequential array factors(M, P) of inner shell and outer shell have been chosen M=4 and P=1 and that of middle shell has been chosen M=8 and P=1. The results of the simulation and the measurement for the proposed triple(4+8+4 element) SRA antenna and the SRA antenna with 256 elements show good characteristics on the integration, bandwidth of the axial ratio and the cross-polarization, the gain respectively.

Implementation of Small Active Antenna for GPS/GLONASS Receiving (GPS/GLONASS 수신용 소형 액티브 안테나의 구현)

  • Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.175-180
    • /
    • 2015
  • In this paper, GPS / GLONASS receiving a small active antenna is proposed. A microstrip patch antenna which supports dual-band (GPS and GLONASS) was optimized. The antenna size is $13{\times}13{\times}3.6mm$. The jig was changed to confirm the proposed antenna characteristic size, was adjusted to feed gap of the patch antenna, it was confirmed by change in LNA shield case or not. The antenna jig size is $65.6{\times}13{\times}0.8mm$. The maximum gain of the GPS band is 3.78dBi, the maximum gain of the GLONASS bands is 4dBi. To amplify the Satellite reception signal level, one-stage low noise amplifier(LNA) was designed. The LNA chip was using the BGA715 N7, the LNA gain is 19.9dB. The utilization possibility of the GPS / GLONASS receiving a small active antenna could be confirmed according to compare and analyze the simulation and measurement data.

Design of Dual-Band Chip Antenna using LTCC Multilayer Technology (LTCC 적층 기술을 이용한 이중대역 칩 안테나의 설계)

  • Kim Young Do;Won Chung Ho;Lee Hong Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.19-24
    • /
    • 2005
  • This paper presents design simulation, implementation, and measurement of a miniaturized GPS/K-PCS dual-band LTCC chip antenna for mobile communication handsets. The dimension of LTCC chip antenna is $9mm\times15mm\times1.2mm$. The meander type radiating patch for dual-band operation is realized by using via holes with 0.3mm height to connect upper and lower-layer antenna. The lower meander type antenna is to be tuned to the lower frequency (GPS) band. The upper meander antenna with via hole connection is to contribute the higher frequency (K-PCS) band. The resonant frequency and frequency ratio of the proposed antenna can be adjusted by changing the height of via-hole and effective path of meander radiating patch. The electrical characteristics of the meander chip antenna applied to a GPS/K-PCS are suitable for mobile communication application.

3 Dimensional Mobile Phone Internal Antenna Using the Helix Element (헤릭스를 이용한 3차원 구조의 휴대폰 내장형 안테나)

  • Hong, Min-Gi;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.906-912
    • /
    • 2008
  • We designed and implemented a 3-dimensional structure internal antenna which has volume less than 1.5 cc for mobile phone to improve efficiency and gain. Multiple bending for the resonance of small internal antenna derives reduction of gain due to cancellation of antenna current. In this study, the current cancelation was reduced by the minimization of antenna bending. And the helix element was applied for the purpose both compensation of short antenna length and action of radiation element. For the verification of this study, a 1.5 cc volume 3D antenna which was fabricated by the press method applied to the dual band mobile phone. Measurement showed that efficiencies and gains under the slide down and up were 27.73 %, 0.29 dBi for the GSM band and 46.84 %, 2.27 dBi for the USPCS band, and had good performance under the small antenna volume. H-plane radiation pattern showed omnidirectional for the both band.

Design of Various WBAN Antennas Considering for the Location on a Human Body (인체 상 위치를 고려한 다양한 WBAN 안테나 설계)

  • Tak, Jinpil;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1095-1103
    • /
    • 2014
  • WBAN has received great attention recently due to its versatile applicability. In this paper, antennas suitable for WBAN communication depending on the locations of mobile devices and the manufacturing of a human equivalent phantom are introduced. The effect of the body on the communication performance is largely dependent on the locations of devices. Specifically, the radiation and return loss characteristics of the antenna are greatly influenced by the characteristics of a medium existing in the near-field of an antenna. Thus, the proper WBAN antenna design is important in establishing a successful communication link between the transceivers. To consider the effect of the body on the antenna performance, the human equivalent phantom is also important factor in the WBAN antenna design and measurement. In introduction, categorization of the WBAN communication channel is introduced and antenna characteristics required for each communication channel are described. In the main subject section, several WBAN antenna design examples along with the implementation of the human equivalent phantom are discussed. In conclusion, the factors, which have to be considered in the design process, and future research are mentioned.

Analysis and fabrication of a wearable antenna using conductive fibers (전도성 실 재질을 이용한 웨어러블 안테나의 제작 및 분석)

  • Nguyen, Tien Manh;Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2770-2776
    • /
    • 2015
  • The development of efficient wearable antennas is required to implement short range body-centric wireless communication links for various internet of thing applications. We present simulation and measurement results of conductive-fiber-based wearable antennas which can comfortably fabricated directly on usual clothing materials. The proposed antenna is a form of a rectangular patch antenna designed by weaving conductive fibers on a felt substrate. A full-wave electromagnetic simulation tool is used to investigate the antenna performance such as antenna impedance, resonant frequency, and radiation efficiency. Parametric studies show that the radiation efficiency increases from 67.5% to 70.4% by widening the gap between conductive fibers from 0.25mm to 3mm. This implies a wearable antenna with good radiation efficiency can be designed despite of less portion of conductive fibers on the antenna. The simulation results are also verified by measured results with fabricated antennas.