• Title/Summary/Keyword: antenna efficiency

Search Result 535, Processing Time 0.028 seconds

Four-Elements L-Shaped Slot Array Monopole Antenna with Dipole-like Radiation Pattern (다이폴형 방사 패턴을 갖는 4소자 L-슬롯 배열 모노폴 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • In this paper, an antenna which has dipole-like radiation pattern and low profile is proposed. The antenna is composed of four elements slot array based on L-shaped 0.43 $\lambda_g$ slot element. It presents a omni-directional radiation patter in the azimuth plane and has a null toward broad-side direction. In the design, a small mono-pole antenna which acts as a large capacitance element, combined with the partially removed ground plane by four L-shaped slots. As a result, these structure act as a LC resonator for radiation. The measured result shows, the impedance bandwidth(VSWR$\leq$2) of the proposed antenna is 60 MHz(2.35$\sim$2.41 GHz). The measured maximum radiation gain and efficiency of proposed antenna is 0.02 dBi, 56.7 % at center frequency 2.38 GHz, respectively. The proposed antenna can be applied to wireless tan access point system.

High-Performance Bidirectional Active Phased-Array Antenna Coupled by Transmission Line (선로결합에 의한 쌍방향 능동 위상차 배열 안테나의 동작특성 향상)

  • Choi, Young-Kyu;Kim, Ki-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.427-437
    • /
    • 2008
  • In order to increase the coupling efficiency of the power and phase of the active phase array antenna, we have fabricated the active phased-array antenna which is coupled by the transmission line, and investigated the relationship between the length of the coupling transmission line and coupling power and phase. The following three types of driving method - (1) giving the frequency difference between the two active antenna, (2) applying the input signal to the one side of the two antennas, and changing the eigen frequency of the other side antenna, (3) appling the different phase inputs to the active antennas was investigated. The experimental results showed that the interval of the antenna elements has not affected the power and the phase of the antenna.

Leaky Wave Radiation and Surface Wave Launching Problem in a Dielectrically Covered Periodically Slitted Parallel-Plate Waveguide (주기적인 슬릿을 갖고 유전체층으로 덮힌 평행평판 도파관에서의 누설파 복사 및 표면파 launching)

  • 이종익;이철훈;조영기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.25-33
    • /
    • 1999
  • Leaky wave radiation and surface wave launching problems in a dielectrically covered and periodically slitted parallel-plate waveguide(PPW) are considered for the TEM wave incidence case. Both the infinite and finite periodic geometries are analyzed by use of the method of moments. Some numerical results for the reflected and transmitted powers in the PPW, radiation efficiency into the free space, surface wave launching efficiency into the slab, antenna gain, and radiation patterns against dielectric thickness are presented to show the effect of the dielectric cover on the performances of the slitted leaky wave antenna. In addition, the method for improving surface wave launching efficiency using the proposed periodic geometry is described and maximum launching efficiency of 97.5% is obtained theoretically. So this structure is thought to be promising as an efficient feeder of dielectric grating antenna as well as image guide.

  • PDF

Performance Analysis of MRT-Based Dual-Polarized Massive MIMO System with Space-Polarization Division Multiple Access

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4006-4020
    • /
    • 2018
  • In recent years, one of the most remarkable 5G technologies is massive multiple-input and multiple-output (MIMO) system which increases spectral efficiency by deploying a large number of transmit-antennas (eg. tens or hundreds transmit-antennas) at base station (BS). However, conventional massive MIMO system using single-polarized (SP) transmit-antennas increases the size of the transmit-array proportionally as the number of transmit-antennas increases. Hence, size reduction of large-scale transmit-array is one of the major concerns of massive MIMO system. To reduce the size of the transmit-array at BS, dual-polarized (DP) transmit-antenna can be the solution to halve the size of the transmit-array since one collocated DP transmit-antenna deploys vertical and horizontal transmit-antennas compared to SP transmit-antennas. Moreover, proposed DP massive MIMO system increases the spectral efficiency by not only in the space domain but also in the polarization domain whereas the conventional SP massive MIMO system increases the spectral efficiency by space domain only. In this paper, the comparative performance of DP and SP massive MIMO systems is analyzed by space division multiple access (SDMA) and space-polarization division multiple access (SPDMA) respectively. To analyze the performance of DP and SP massive MIMO systems, DP and SP spatial channel models (SCMs) are proposed which consider depolarized propagation channels between transmitter and receiver. The simulation results show that the performance of proposed 32 transmitter (Tx) DP massive MIMO system improves the spectral efficiency by about 91% for a large number of user equipments (UEs) compare to 32Tx SP massive MIMO system for identical size of the transmit-array.

A Study on Multi-band Antenna for Mobile using Coupling Feeding (커플링 급전을 이용한 모바일용 다중대역 안테나에 관한 연구)

  • WANG, Cheng;YOON, In-seop;HWANG, Sun-gook;YAN, Xiao-jia;PARK, Hyo-Dal
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.188-194
    • /
    • 2014
  • In this paper, an antenna which has quad band in LTE (0.746 ~ 0.798 GHz), GSM(0.824 ~ 0.960 GHz), DCS(1.71 ~ 1.88 GHz), WCDMA(1.91 ~ 2.17 GHz) is proposed. An antenna size is $122mm{\times}50mm{\times}0.8mm$ on FR4(${\epsilon}_r=4.4$) ground substrate. In the proposed antenna, branch line is applied to the conventional PIFA architecture to achieve multi-bandwidth. Coupling power supply is applied for a wide bandwidth. Result of the measurement is as follows. When the low frequency, the antenna presents gain of 0.93 ~ 1.92dBi, and radiation efficiency of 49.60 ~ 76.35 %, and When the high frequency, gain is 2.19 ~ 4.66dBi, and radiation efficiency is 60.40 ~ 80.01 %, and with a VSWR < 2 (${\leq}-10dB$)measurement results for standard satisfies all band. Judging from the result, proposed multiband antenna is expected to be applied. B4G mobile terminals since the antenna shows an outstanding performance.

Development and Field Test of the NEXTSat-2 Synthetic Aperture Radar (SAR) Antenna Onboard Vehicle (차세대소형위성 2호 영상 레이다 안테나 개발 및 차량 탑재 시험)

  • Shin, Goo-Hwan;Lee, Jung-Su;Jang, Tae Seong;Kim, Dong-Guk;Jung, Young-Bae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Based on the requirements of a total weight of 42 kg or less, the NEXTSat-2 SAR (synthetic aperture radar) system was developed. As the NEXTSat-2 is a small-sized satellite, the SAR system was designed to account for about 40% of the dry mass of the payload relative to the total mass. Among the major components of the SAR system - which are an antenna, an RF transceiver, a baseband signal processor, and a power unit - a part with a particularly large dry mass is the antenna, the core of the SAR system. Whereas various selections are possible in consideration of gain and efficiency when designing the antenna, the micro-strip patch array antenna was adopted by reflecting the dry mass, power, and resolution required by the NEXTSat-2 project. In order to meet the mission requirement of the NEXTSat-2, the antenna was developed with a frequency of 9.65 GHz, a gain of 42.7 dBi, and a return loss of -15 dB. The performance of the antenna was verified by conducting a field test onboard the vehicle.

Power Allocation for Half-duplex Relay-based D2D Communication with QoS guarantee

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1311-1324
    • /
    • 2019
  • In the traditional cellular network communication, the cellular user and the base station exchange information through the uplink channel and downlink channel. Meanwhile, device-to-device (D2D) users access the cellular network by reusing the channel resources of the cellular users. However, when cellular user channel conditions are poor, not only D2D user cannot reuse its channel resources to access the network, but also cellular user's communication needs cannot be met. To solve this problem, we introduced a novelty D2D communication mechanism in the downlink, which D2D transmitter users as half-duplex (HD) relays to assist the downlink transmission of cellular users with reusing corresponding spectrum. The optimization goal of the system is to make the cellular users in the bad channel state meet the minimum transmission rate requirement and at the same time maximize the throughput of the D2D users. In addition, i for the purpose of improving the efficiency of relay transmission, we use two-antenna architecture of D2D relay to enable receive and transmit signals at the same time. Then we optimized power of base station and D2D relay separately with consideration of backhaul interference caused by two-antenna architectures. The simulation results show that the proposed HD relay strategyis superior to existing HD and full-duplex (FD) models in the aspects of system throughput and power efficiency.

Calculation of Spectral Efficiency for Estimating Spectrum Requirements of IMT-Advanced in Korean Mobile Communication Environments

  • Chung, Woo-Ghee;Lim, Eun-Taek;Yook, Jong-Gwan;Park, Han-Kyu
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2007
  • In this paper, we analyze the algorithm of the methodology developed by ITU for the calculation of spectrum requirements of IMT-Advanced. We propose an approach to estimate user density using traffic statistics, and to estimate spectrum efficiencies using carrier-to-interference ratio distribution and capacity theory as well as experimental data under Korean mobile communication environments. We calculate the IMT-Advanced spectrum requirements based on the user density and spectral efficiencies acquired from the new method. In the case of spectral efficiency using higher modulation and coding schemes, the spectrum requirement of IMT-Advanced is approximately 2700 MHz. When applying a $2{\times}2$ multiple-input multiple-output (MIMO) antenna system, it is approximately 1500 MHz; when applying a $4{\times}4$ MIMO antenna system, it is approximately 1050 MHz. Considering that the development of new technology will increase spectrum efficiency in the future, the spectrum requirement of IMT-Advanced in the Korean mobile communication environment is expected to be approximately 1 GHz bandwidth.

  • PDF

Microwave Properties of Co2 Ferrite for Miniaturization of Antenna (안테나 소형화를 위한 Co2 페라이트의 마이크로파 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Kim, Kang;Lee, Young-Hie;Song, Sung-Ho;Ahn, Jong-Bok;Kim, Byung-Hwan;Choi, Ji-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2270-2275
    • /
    • 2011
  • The sintering behavior and microwave properties of ferrite ($Ba_3Co_{2-2x}Zn_{2x}Fe_{24}O_{41}$ ceramics) were investigated for microwave applications. Also PIFA type antenna with ferrite was simulated. All samples were prepared by the solid state reaction method and sintered at $1350^{\circ}C$. All ceramics had relatively density above of 92% compare with theoretical density of $Ba_3Co_2Fe_{24}O_{41}$ ceramics. From the XRD pattens, the Z-type phase was existed as main phase in $Ba_3Co_{2-2x}Zn_{2x}Fe_{24}O_{41}$ ceramics. The permittivity and permeability of $Ba_3Co_{2-2x}Zn_{2x}Fe_{24}O_{41}$ ceramics were increased with Zn additions and decreased rapidly over frequency of 200~600 MHz. Several PIFA type antennas with ferrite and FR4 were simulated. All antenna structure had return loss of less than -10 dB at each resonant frequency. Simulated antenna using both ferrite and FR4 showed size reduction of 25% without a significant decrement of efficiency.

Design of Square Patch Reflectarray Antenna with U-type Slot (U자형 슬롯을 갖는 정사각형 패치 리플렉트어레이 안테나의 설계)

  • Kim, Seon-Hye;Choi, Hak-Keun;Park, Jae-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • The microstrip reflectarray antenna is rapidly becoming an attractive alternative solution to the traditional parabolic reflector antenna. However, the bandwidth of the microstrip reflectarray using the single layer structure is very narrow. To obtain wide bandwidth characteristic, the microstrip reflectarray using the multi-layer structure has been used, but it has some disadvantages such as high cost and complicated design. In this paper, to obtain low cost and wide bandwidth, the microstrip reflectarray antenna composed of square patch with two U-slots using the single-layer structure is proposed. The proposed antenna demonstrate radiation efficiency closed to 55.5 % and 1 dB gain bandwidth over 14 % at 12.5 GHz.