• Title/Summary/Keyword: antarctic soil

Search Result 19, Processing Time 0.03 seconds

Dynamic Soil Properties of Frozen and Unfrozen Soils from Terra Nova Bay in Eastern Antarctica (동남극 테라노바만 흙 시료의 동결 및 비동결 상태에서의 동적특성 평가)

  • Kim, Jae-Hyun;Kwon, Yeong-Man;Park, Keunbo;Kim, YoungSeok;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.37-47
    • /
    • 2017
  • The geotechnical characteristics of frozen ground is one of the key design issues for the construction of infrastructure in cold region. In this study, the dynamic properties (shear modulus and damping ratio) of frozen and unfrozen soils sampled from Terra Nova Bay located in eastern Antarctica, where Jang Bogo station was built, were investigated using Stokoe-type resonant column test (RC). In order to freeze the reconstituted soil specimen, the RC testing equipment was modified by adding a cooling system. A series of resonant column tests were performed in frozen and unfrozen soils with various soil densities and temperatures. The shear modulus (G) and damping ratio (D) of soil frozen at $-7^{\circ}C$ were compared with those of unfrozen soil. In addition, the effect of temperature rise on the maximum shear modulus ($G_{max}$) and damping ratio was experimentally investigated. This study has significance in that the difference of dynamic soil properties between frozen and unfrozen soils and the effect of temperature rise on frozen soil were identified.

An Experimental Study of the King Sejong Station and Siberian Frozen Soils (세종기지 및 시베리아 흙의 동결특성 시험)

  • Kim, Youngchin;Shin, Jaewon;Son, Seungmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.5-12
    • /
    • 2009
  • Soil samples from the King Sejong Station in Antarctic and Vladivostok were tested in the laboratory and specific gravity, compaction curve, grain size distribution were determined. The effect of temperature change on the thermal conductivity, unfrozen water content, compressive strength were investigated. In addition, the change of tensile strength with temperature of the soil from Vladivostok was measured. Samples for the compressive strength test and tensional strength test were prepared in a mould with a fixed volume to prevent swelling. Also the effects of temperature and water content change on those strength were compared. Results from the thermal conductivity test showed that thermal conductivity values for both soils was larger at temperatures below freezing than those above freezing. The unfrozen water content dropped rapidly within a temperature range of $0{\sim}-5^{\circ}C$ and then gradually decreased further $-20^{\circ}C$. Compressive strength test results showed various stress/deformation curves with a change in water content. Sandy soil of the King Sejong Station had a much larger strength than ice at an identical temperature, while clayey soil of Vladivostok had a smaller strength than ice in the initial stage, but showed a larger strength at temperatures belows $-15^{\circ}C$. Tensile strength tests revealed an increase in the strength with a decreasing temperature.

  • PDF

Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents (세립분 함유량에 따른 동결 사질토의 응력-변형률-강도 특성)

  • Chae, Deokho;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.31-38
    • /
    • 2015
  • Recently, the participation on the development of the natural gas pipeline in Russia as well as the recent construction of the second Korean Antarctic research station, the Jangbogo station provide the research interests on the behavior of the permafrost ground. To investigate the effect of fines on the mechanical responses of frozen sands, unconfined compression tests were performed on the frozen sands with 0, 5, 10 and 15% of fine contents at -5, -10 and $-15^{\circ}C$. The poorly graded (SP) Joomunjin sand and kaolinite, silt with low plasticity (ML) were used for the preparation of the frozen soil specimens. The mechanical responses of the tested soils were investigated via unconfined compression tests in the temperature controlled laboratory and analyzed in terms of peak unconfined compressive strength and secant modulus at 50% of the peak strength. As the fine contents increase, the unfrozen water contents increase and thus the strength and stiffness of frozen soils decrease. The increment of the stiffness and strength due to the temperature decrease vary with the fine contents.

Physico-chemical Characteristics of Soil in the Vicinity of King Sejong Station, King George Island, Antarctica (남극 킹조지섬 세종기지 주변지역 토양의 물리화학적 특성)

  • Choi, Ik-Won;Park, Yang-Ju;Seo, Dong-Cheol;Kang, Se-Won;Jeon, Weon-Tai;Kang, Ui-Gum;Sung, Hwan-Hoo;Hur, Tai-Young;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.709-716
    • /
    • 2011
  • In order to collect basic data of soil environment in the Vicinity of King Sejong Station, King George Island, Antarctica, the physico-chemical characteristics of soils were investigated. Soil samples were collected in Barton Peninsula from 13 sites according to direction from the Sejong Cape. Soils from 13 sites were divided into three groups. The sand percentage of soils were much higher as above 90% than silt and clay percentages of soils at the all sites. Soil texture was classified sandy (10 sites) and loamy sand (3 sites). In distribution characteristics at different soil particles according to direction, large particles ($>500{\mu}m$) were higher in the order of Group 1 (Marian cove coast regions) > Group 2 (Inland regions) > Group 3 (Maxwell bay coast regions). On the other hand, small particles ($<355{\mu}m$) were higher in the order of Group 3 > Group 2 > Group 1. Chemical characteristic of soils showed significant differences at different areas. pH ranged 4.5-6.7, showing it was slightly acid and EC ranged $0.06-0.16dS\;m^{-1}$. T-N, OM and T-C contents were high at #6, #8, #12 and #13 sites. T-P and P2O5 contents were high at #9 and #12 sites. The results of this study will be helpful to understand soil environment in the Antarctic Peninsula and surrounding islands.

An Experimental Study on the Creep Behavior of Frozen Sand (동결 사질토의 크리프 거동에 관한 실험적 연구)

  • Chae, Deokho;Kim, Youngseok;Lee, Jangguen;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.27-36
    • /
    • 2014
  • Due to the latitudinal location of Korea, the seasonally frozen ground has been focused on as research topics such as the frost heaving under the asphalt road rather than the permafrost ground. However, the recent construction of the second Korean Antarctic research station, the Jangbogo station and the participation on the development of the natural gas pipeline in Russia arouse the research interests on the behavior of the permafrost ground. At the design process of the geotechnical structures on the permafrost ground, the evaluation of the creep characteristics of the frozen soil is very crucial. Since the domestic specification on the frozen soil testing does not exist currently, it is necessary to evaluate the creep characteristics of frozen soils systematically with regard to the affecting factors. Therefore, the creep characteristics of the frozen specimens of dense Jumoonjin sand were evaluated under various loads at -5 and $-10^{\circ}C$. Based on the test results, as the load became close to the strength and the temperature became lower, the duration of the secondary creep became shorter and more distinct tertiary creep responses were observed.

Distribution Pattern of Deschampsia antarctica, a Flowering Plant Newly Colonized around King Sejong Station in Antarctica (남극 세종기지 주변에 새로이 정착한 현화식물 남극좀새풀 (Deschampsia antarctica)의 개체군 공간분포)

  • Kim, Ji-Hee;Chung, Ho-Sung
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.23-32
    • /
    • 2004
  • As a baseline survey for long-term monitoring on environmental change around the Antarctic King Sejong Station, distribution pattern of Deschampsia antarctica Desv., a flowering plant newly colonized were investigated qualitatively and quantitatively in both austral summer 2002 and 2003. Dispersal of the seeds and vegetative leaves by skuas might lead to the colonization into this area from neighbors in Maxwell Bay. The pioneer populations were observed around ponds and a stream of the Sejong Point in January 2002, and the maximum dispersal area was four times expanded after a year. Most of the populations were formed on the stable and well-drained substrate, which consisted of moss carpet of Sanionia georgico-uncinata (65%) and pebbles (25%), while only a few young individuals were observed on the unstable and watertight silt-sandy area. Especially, S. georgico-uncinata was being effectively utilized as their primary substrate with the soft, coarse and water-contained leaves. Also the perennial mature plants of D. antarctica were mainly formed on the moss carpet rather than pebbles. A few individuals were grown on other mosses of Polytrichastrum alpinum, Bryum pseudotriquetrum, Pohlia cruda, and Conostomum magellanicum and on a liverwort of Cephaloziella varians. We expect that dispersal of D. antarctica and the following succession to grass field will be countinuously and dynamically proceeded in this area, with the characteristics of ecological niche against the initial moss populations, on the similar continuity of environmental conditions. The continuous observations are needed with establishment of database on environmental change of micro-habitats, e.g. the water content and nutrients of soil and the underground temperature and permafrost.

Surface Energy Balance at Sejong Station, King George Island, Antarctica (남극 세종기지의 에너지 평형)

  • Kim, Jhoon;Cho, Hi Ku;Jung, Yeon Jin;Lee, Yun Gon;Lee, Bang Yong
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.

Isolation and Identification of the Crude Oil-degrading Psychrotrophic Bacterium and the Characteristics of OCT Plasmid (저온성 원유분해 세균의 분리동정 및 OCT 프라스미드 특성)

  • 김상진;윤희정
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.66-73
    • /
    • 1993
  • Psychrotrophic bacterial strains utilizing crude oil as their sole carbon and energy sources were isolated from Antarctic soil and sea sediments. One of the strains named AI-I showed the hightest activity for emulsification of crude oil and the best growth. This strain was identified as Acinetobacter calcoaceticus. A. calcoaceticus AI-I strain contains a plasmid (OCT plasmid) which was related to the utilization of alkane compounds. The molecular weight of this plasmid was estimated to be about 110 Md by agarose gel electrophoresis. The cured strain of A. calcoaceticus AI-I strain (OCT ) was not able to utilize normal hydrocarbon compounds ($C_6C_{17}$) as carbon and energy sources. A. ca/coaceticus AI-1 was resistant to ampicillin and sensitive to streptomycin, kanamycin, chloramphenicol, tetracycline. The results suggested that this strain carries a plasmid (OCT) responsible for oil utilization which is quite stable and might be concerned with antibiotics resistancy.

  • PDF

Mineralogical and Geochemical Characteristics of Soils of Barton Peninsula, King George Island, South Shetland Islands, West Antarctica (서남극 사우스셰틀랜드 킹조지섬 바톤반도 육상 토양의 광물학적, 지화학적 특성)

  • Jung, Jaewoo;Koo, Taehee;Yang, Kiho;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Surface soils on Barton Peninsula, King George Island, West Antarctica were investigated to acquire the mineralogical and geochemical data of soil in Antarctica. Multiline of techniques for example, X-ray diffraction (XRD), transmission electron microscopy (TEM)-electron energy loss spectroscopy (EELS), and wet chemistry analysis were performed to measure the composition of clay minerals, Fe-oxidation states, cation exchange capacity, and total cation concentration. Various minerals in sediments such as smectite, illite, chlorite, kaolinite, quartz and plagioclase were identified by XRD. Fe-oxidation states of bulk soils showed 20-40% of Fe(II) which would be ascribed to the reduction of Fe in clays as well as Fe-bearing minerals. Moreover, redox states of Fe in smectite structure was a ~57% of Fe(III) consistent to the values for the bulk soils. The cation exchange capacity of bulk soils ranged from 100 to 300 meq/kg and differences were not significantly measured for the sampling locations. Total cations (Mg, K, Na, Al, Fe) of bulk soils varies, contrast to the heavy metals (Co, Ni, Cu, Zn, Mn). These results suggested that composition of bed rocks influenced the distribution of elements in soil environments and soils containing clay compositions may went through the bio/geochemical alteration.