• Title/Summary/Keyword: ant

Search Result 737, Processing Time 0.028 seconds

Balance between Intensification and Diversification in Ant Colony Optimization (개미 집단 최적화에서 강화와 다양화의 조화)

  • Lee, Seung-Gwan;Choi, Jin-Hyuk
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.100-107
    • /
    • 2011
  • One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. In this paper, we deal with the performance improvement techniques through balance the intensification and diversification in Ant Colony System(ACS) which is one of Ant Colony Optimization(ACO). In this paper, we propose the hybrid searching method between intensification strategy and diversification strategy. First, the length of the global optimal path does not improved within the limited iterations, we evaluates this state that fall into the local optimum and selects the next node using changed parameters in the state transition rule. And then we consider the overlapping edge of the global best path of the previous and the current, and, to enhance the pheromone for the overlapping edges increases the probability that the optimal path is configured. Finally, the performance of Best and Average-Best of proposed algorithm outperforms ACS-3-opt, ACS-Subpath, ACS-Iter and ACS-Global-Ovelap algorithms.

Prolong life-span of WSN using clustering method via swarm intelligence and dynamical threshold control scheme

  • Bao, Kaiyang;Ma, Xiaoyuan;Wei, Jianming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2504-2526
    • /
    • 2016
  • Wireless sensors are always deployed in brutal environments, but as we know, the nodes are powered only by non-replaceable batteries with limited energy. Sending, receiving and transporting information require the supply of energy. The essential problem of wireless sensor network (WSN) is to save energy consumption and prolong network lifetime. This paper presents a new communication protocol for WSN called Dynamical Threshold Control Algorithm with three-parameter Particle Swarm Optimization and Ant Colony Optimization based on residual energy (DPA). We first use the state of WSN to partition the region adaptively. Moreover, a three-parameter of particle swarm optimization (PSO) algorithm is proposed and a new fitness function is obtained. The optimal path among the CHs and Base Station (BS) is obtained by the ant colony optimization (ACO) algorithm based on residual energy. Dynamical threshold control algorithm (DTCA) is introduced when we re-select the CHs. Compared to the results obtained by using APSO, ANT and I-LEACH protocols, our DPA protocol tremendously prolongs the lifecycle of network. We observe 48.3%, 43.0%, and 24.9% more percentages of rounds respectively performed by DPA over APSO, ANT and I-LEACH.

The Effect of Multiagent Interaction Strategy on the Performance of Ant Model (개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • One of the important fields for heuristics algorithm is how to balance between Intensificationand Diversification. Ant Colony System(ACS) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we propose Multi Colony Interaction Ant Model that achieves positive negative interaction through elite strategy divided by intensification strategy and diversification strategy to improve the performance of original ACS. And, we apply multi colony interaction ant model by this proposed elite strategy to TSP and compares with original ACS method for the performance.

  • PDF

Reinforcement Method to Enhance Adaptive Route Search for Efficient Real-Time Application Specific QoS Routing (Real-Time Application의 효과적인 QoS 라우팅을 위한 적응적 Route 선택 강화 방법)

  • Oh, Jae-Seuk;Bae, Sung-Il;Ahn, Jin-Ho;Sungh Kang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.71-82
    • /
    • 2003
  • In this paper, we present a new method to calculate reinforcement value in QoS routing algorithm targeted for real-time applications based on Ant algorithm to efficiently and effectively reinforce ant-like mobile agents to find the best route toward destination in a network regarding necessary QoS metrics. Simulation results show that the proposed method realizes QoS routing more efficiently and more adaptively than those of the existing method thereby providing better solutions for the best route selection for real-time application that has high priority on delay jitter and bandwidth.

P22-Based Challenge Phage Constructs to Study Protein-Protein Interactions between the $\sigma$$^{54}$-Dependent Promoter, dctA, and Its Transcriptional Regulators

  • Song, Jeong-Min;Kim, Eungbin;Lee, Joon H.
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.205-210
    • /
    • 2002
  • To study interactions between $C_{4}$-dicarboxylic acid transport protein D and E$\sigma$$^{54}$ in the dctA promoter regulatory region, we used the challenge phage system. An ant'-`lac fusion was recombined onto the challenge phage, and this ant'-`lac fusion along with Pant and the R. meliloti dctA promoter regulatory region were cloned onto a plasmid. The plasmid bearing the ant'-`lac fusion was used as a reporter plasmid in a coupled transcription-translation system. Addition of purified $\sigma$$^{54}$ to the coupled system specifically repressed transcription of the plasmid-borne ant'-`lac fusion. When DCTD was added along with $\sigma$$^{54}$ to the coupled system, transcription of the ant'-`lac fusion was even further repressed, suggesting that DCTD may stabilize closed complexes between E$\sigma$$^{54}$ and the dctA promoter.

Recurrent Ant Colony Optimization for Optimal Path Convergence in Mobile Ad Hoc Networks

  • Karmel, A;Jayakumar, C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3496-3514
    • /
    • 2015
  • One of the challenging tasks in Mobile Ad hoc Network is to discover precise optimal routing solution due to the infrastructure-less dynamic behavior of wireless mobile nodes. Ant Colony Optimization, a swarm Intelligence technique, inspired by the foraging behaviour of ants in colonies was used in the past research works to compute the optimal path. In this paper, we propose a Recurrent Ant Colony Optimization (RECACO) that executes the actual Ant Colony Optimization iteratively based on recurrent value in order to obtain an optimal path convergence. Each iteration involves three steps: Pheromone tracking, Pheromone renewal and Node selection based on the residual energy in the mobile nodes. The novelty of our approach is the inclusion of new pheromone updating strategy in both online step-by-step pheromone renewal mode and online delayed pheromone renewal mode with the use of newly proposed metric named ELD (Energy Load Delay) based on energy, Load balancing and end-to-end delay metrics to measure the performance. RECACO is implemented using network simulator NS2.34. The implementation results show that the proposed algorithm outperforms the existing algorithms like AODV, ACO, LBE-ARAMA in terms of Energy, Delay, Packet Delivery Ratio and Network life time.

Parameters Influencing the Performance of Ant Algorithms Applied to Optimisation of Buffer Size in Manufacturing

  • Becker, Matthias;Szczerbicka, Helena
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.184-191
    • /
    • 2005
  • In this article we study the feasibility of the Ant Colony Optimisation (ACO) algorithm for finding optimal Kanban allocations in Kanban systems represented by Stochastic Petri Net (SPN) models. Like other optimisation algorithms inspired by nature, such as Simulated Annealing/Genetic Algorithms, the ACO algorithm contains a large number of adjustable parameters. Thus we study the influence of the parameters on performance of ACO on the Kanban allocation problem, and identify the most important parameters.

An Ant Colony Optimization Approach for the Two Disjoint Paths Problem with Dual Link Cost Structure

  • Jeong, Ji-Bok;Seo, Yong-Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.308-311
    • /
    • 2008
  • The ant colony optimization (ACO) is a metaheuristic inspired by the behavior of real ants. Recently, ACO has been widely used to solve the difficult combinatorial optimization problems. In this paper, we propose an ACO algorithm to solve the two disjoint paths problem with dual link cost structure (TDPDCP). We propose a dual pheromone structure and a procedure for solution construction which is appropriate for the TDPDCP. Computational comparisons with the state-of-the-arts algorithms are also provided.

  • PDF

DEVELOPMENT OF A NEW PATH PLANNING ALGORITHM FOR MOBILE ROBOTS USING THE ANT COLONY OPTIMIZATION AND PARTICLE SWARM OPTIMIZATION METHOD (ACO와 PSO 기법을 이용한 이동로봇 최적화 경로 생성 알고리즘 개발)

  • Lee, Jun-Oh;Ko, Jong-Hoon;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.77-78
    • /
    • 2008
  • This paper proposes a new algorithm for path planning and obstacles avoidance using the ant colony optimization algorithm and the particle swarm optimization. The proposed algorithm is a new hybrid algorithm that composes of the ant colony algorithm method and the particle swarm optimization method. At first, we produce paths of a mobile robot in the static environment. And then, we find midpoints of each path using the Maklink graph. Finally, the hybrid algorithm is adopted to get a shortest path. We prove the performance of the proposed algorithm is better than that of the path planning algorithm using the ant colony optimization only through simulation.

  • PDF

NoC-Based SoC Test Scheduling Using Ant Colony Optimization

  • Ahn, Jin-Ho;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.129-140
    • /
    • 2008
  • In this paper, we propose a novel ant colony optimization (ACO)-based test scheduling method for testing network-on-chip (NoC)-based systems-on-chip (SoCs), on the assumption that the test platform, including specific methods and configurations such as test packet routing, generation, and absorption, is installed. The ACO metaheuristic model, inspired by the ant's foraging behavior, can autonomously find better results by exploring more solution space. The proposed method efficiently combines the rectangle packing method with ACO and improves the scheduling results by dynamically choosing the test-access-mechanism widths for cores and changing the testing orders. The power dissipation and variable test clock mode are also considered. Experimental results using ITC'02 benchmark circuits show that the proposed algorithm can efficiently reduce overall test time. Moreover, the computation time of the algorithm is less than a few seconds in most cases.

  • PDF