• Title/Summary/Keyword: anoxic tank

Search Result 61, Processing Time 0.02 seconds

A Study on Advanced Municipal Wastewater Treatement by Daewoo Nutrients Removal (DNR) System (DNR 시스템에 의한 하수(下水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Park, Myung-Gyun;Chang, Yun-Seok;Park, Chul-Hwi;Park, Chil-Lim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.115-123
    • /
    • 1995
  • The purpose of this study is to investigate the characteristics and performance of nitrogen and phosphorus removal system, Daewoo Nutrients Removal(DNR) system, and to find out the operating parameter for the system. During the study, $10m^3$ pilot plant was operated for the demonstration experiment and the primary effluent was taken from K domestic sewage treatment plant. The TN in the influent had been removed to approximately 70% through the nitrfication in the oxic tank and the denitrfication in the anoxic tank and the $PO_4-P$ and TP in the influent had been removed to 85% and 83% through anaerobic reaction and oxic reaction. The BOD and SS removal rate were 85 to 95% through the system. As the results, the values of effluent BOD, SS and slouble phosphorus were lower than A/O and $A^2/O$ processes. The SPRR (specific phosphorus release rate) at the anaerobic state of DNR system was ranged from 2.2 to 2.6mg SP/g VSS/h. The nutrient removal efficieny of the DNR system in view of the characteristics of the domestic sewage was higher than the pre-established A/O and $A^2/O$ processes. Finally, we believe that the DNR system was superior to the processes deveolped recently.

  • PDF

Application of SMBR process in food wastewater advanced treatment (SMBR을 이용한 음식폐수의 고도처리)

  • 윤용수;강광남;정순형
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.34-39
    • /
    • 2001
  • Submerged Membrane Bio-Reacter(SMBR) process was used to food wastewater treatment. From laboratory pilot-scale experiment data, it was confirmed that this process was very effective process for organics, suspended solid, and N, P treatment. It was found that BOD and COD removal rate were obtained 90% and 92%, respectively, for 150 days operation. Organics loading rate did not affect to the removal efficiency because MLSS concentration in aerobic tank was highly maintained. IN the case of first reactor operated with anoxic and second reactor operated as aerobic, T-N, T-P removal rate were obtained 93% and 95%, respectively. It was shown that removal efficiency could be maintained stable due to the complete removal of SS and sludge production decreased with increasing of sludge retention time.

  • PDF

GPS-X Based Modeling on the Process of Gang-byeon Sewage Treatment Plant and Design of Recycle Water Treatment Process (GPS-X 기반 모델링에 의한 강변사업소 처리효율 분석 및 반류수 처리 공정 설계)

  • Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1493-1498
    • /
    • 2016
  • The efficiencies of Gang-Byeon sewage treatment facilities, which are based on GPS-X modelling, were analysed and used to design recycle water treatment processes. The effluent of an aeration tank contained total kjeldahl nitrogen (TKN) of 1.8 mg/L with both C-1 and C-2 conditions, confirming that most ammonia nitrogen ($NH_3{^+}-N$) was converted to nitrate nitrogen ($NO_3{^-}-N$). The concentrations of $NH_3{^+}-N$ and $NO_3{^-}-N$ were found to be 222.5 and 227.2 mg/L, respectively, with C-1 conditions and 212.2 and 80.4 mg/L with C-2 conditions. Although C-2 conditions with higher organic matter yielded a slightly higher nitrogen removal efficiency, sufficient denitrification was not observed to meet the discharge standards. For the total nitrogen (T-N) removal efficiency, the final effluent concentrations of T-N were 293.8 mg/L with biochemical oxygen demand (BOD) of 2,500 mg/L, being about 1.5 times lower than that (445.3 mg/L) with BOD of 2,000 mg/L. Therefore, an external carbon source to increase the C/N ratio was required to get sufficient denitrification. During the winter period with temperature less than $10^{\circ}C$, the denitrification efficiency was dropped rapidly even with a high TKN concentration (1,500 mg/L). This indicates that unit reactors (anoxic/aerobic tanks) for winter need to be installed to increase the hydraulic retention time. Thus, to enhance nitrification and denitrification efficiencies, flexible operations with seasons are recommended for nitrification/anoxic/denitrification tanks.

A Study on the Municipal Wastewater Treatment Using Biofilm Process (생물막공법을 이용한 도시하수처리에 관한 연구)

  • Kwak, Byung Chan;Tak, Seong Jae;Kim, Nam Cheon;HWang, Yong Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.62-75
    • /
    • 2000
  • Most of biological treatment to remove contaminants in municipal wastewater have been conducted by activated sludge process. But, the process have several probIems such as enormous site needed for construction of treatment facilities, unstable treatment due to limited ability to control load fluctuation, frequent sludge bulking and appearance of lots of surplus sludge. In this study, the experiments were performed through submerging biofilm of PEPP media in existing aeration tank with raw water from municipal wastewater treatment plant and then submerging PVDC and PEPP media, different from shape and chemical peculiarity in anoxic reactor. Throughout the experience, nutrient removal efficiency according to HRT, nitrogen phosphorous removal efficiency, behavior of nitrogen and dewatering efficiency have been compared and analysed with those of activated sludge process. As the results, BOD removal efficiency according to BOD volumetric load and F/M ratio was not found any differency in two processes, but was decreased below 90% as going along the condition of high load in activated sludge process. Kinetic coefficient was $K_{max}=1.162day^{-1}$, $K_s=53.77mg/L$, $Y=0.166mgVSS/mgBOD_{rem}$. and $K_d=0.019day^{-1}$. It was found that the removal efficiency, even though in aerobic condition, in biofilm process equipped anoxic reactor was higher than the one in activated sludge process within the range of 70~80%, and became better as HRT increased. Phosphorous removal efficiency was not found any differency in two processes. In biofilm process, treament efficiency even in conditions of high load was not decreased, because the biomass concentration could be maintained in high condition compared with activated sludge process. As HRT increased, suspended and attached biomass was increased and the other hand, F/M ratio was decreased as biomass' increasing. Biomass thickness was increased. from $10.43{\mu}m$ to $10.55{\mu}m$ as HRT increased and density of biomass within $40.79{\sim}41.16mg/cm^2$. The results also present that the dewatering efficiency of sludge generated in biofilm process was higher than in activated sludge process, and became better as HRT increased.

  • PDF

A Study on the Optical Internal Recycle Rate and MLSS Concentration of Membrane Coupled $A_2O$ Process for Wastewater Treatment (하수처리를 위한 막결합형 $A_2O$공정에서 최적 내부 순환율 및 MLSS 농도에 관한 연구)

  • Kim Kwan-Yeop;Kim Jin-Mo;Kim Hyung-Soo;Lee Sang-Bek;Park Eugene;Bae Sung-Soo
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.114-120
    • /
    • 2005
  • The purpose of this study is to obtain practical information about membrane coupled $ A_2O$ system for muncipal wastewater treatment. A flat-plate microfiltration (MF) module with a pore size $0.25\;{\mu}m$ was submerged into the aeration basin and treated water was filtrated through the membrane by continuous suction with low pressure. The system was operated with synthetic wastewater to find operational parameters of internal recycle ratio and maximum MLSS showing best water quality and long-term stability. The internal recycle was defined as type 1 for aerobic to anoxic tank and type 2 for anoxic to anaerobic tank, respectively When the flux was maintained at $0.015\;m^3/m^2/hr$ (15 LMH) with 2Q type 1 internal recycle ratio, the optimal operational setting were 10 internal recycle ratio for type 2 and maximum MLSS of 11,000 mg/L among tested conditions. At this condition, removal efficiencies of BOD, CODcr, T-N and T-P showed $97.3\%,\;94.2\%,\;64.0\%,\;63.0\%$, respectively.

Characteristic Features and Effect of Neo-Hydrofoil Impeller Applied in Sewage Treatment Plants (하수처리 공법별 네오하이드로포일 교반기의 적용 특성 및 효과)

  • Joo, Yoon-Sik;Son, Guntae;Bae, Youngjun;Lee, Seunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • In this study, a newly developed agitator with hydrofoil impeller applied to actual biological process in advanced wastewater treatment plant was evaluated. Several series of experiments were conducted in two different wastewater treatment plants where actual problems have been occurred such as the production of scums and sludge settling. For more effective evaluation, computational fluid dynamics (CFD) and measurements of MLSS (Mixed Liquor Suspended Solids) and DO (Dissolved Oxygen) were used with other measuring equipments. After the installation of one unit of vertical hydrofoil agitator in plant A, scum and sludge settling problems were solved and more than seventy percent of operational energy was saved. In case of plant B, there were three cells of each anoxic and anaerobic tanks, and each cell had one unit of submersible horizontal agitator. After the integration of three cells to one cell in each tank, and installation of one vertical hydrofoil agitator per tank, all the problems caused by improper mixing were solved and more than eighty percent of operational energy was found to be saved. Simple change of agitator applied to biological process in wastewater treatment plant was proved to be essential to eliminate scum and sludge settling problems and to save input energy.

Evaluation of the impact of sewage treatment plants in the Linked treatment through the sewage treatment computer simulation program (하수처리 전산모사 프로그램을 통한 연계처리시 하수처리장 영향 평가)

  • Kim, Sungji;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.321-327
    • /
    • 2020
  • Recently The amount of wastewater and linked wastewater is being increased every year due to industrial development, population growth, and improvement in living standards. Linked wastewater shows the feature-low flow rate and high concentration. Therefore, it has been shown that it has a great impact on the operation of the sewage treatment plant and costs a lot for treating linked wastewater. In this study, a scenario with low increase of water quality when the total amount of the inflow of linked wastewater was entered into individual reactors is obtained. According to the result of modeling, The effluent water quality get the least increment once the water was introduced into the influent and anoxic tank. We generated the various scenarios Based on these results. scenarios are varying according to inflow from linked waste water's distribution ration. As a result of modeling through various scenarios, it was found that the increment of TN and TP were at the least when the inflow of linked water was distributed with ratio between sewage (80%) and oxygen-free tank (20%).

Enhanced total phosphorus removal using a novel membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation (유입흐름 변경 및 전응집 기반 이단응집 제어 적용 MBR을 통한 총인처리 개선 연구)

  • Cha, Jaehwan;Shin, Kyung-Suk;Park, Seung-Kook;Shin, Jung-Hun;Kim, Byung-Goon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.103-114
    • /
    • 2017
  • A membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation was evaluated in terms of phosphorus removal efficiency and cost-savings. The MBR consisted of two identical alternative reaction tanks, followed by aerobic, anoxic and membrane tanks, where the wastewater and the internal return sludge alternatively flowed into each alternative reaction tank at every 2 hours. In the batch-operated alternative reaction tank, the initial concentration of nitrate rapidly decreased from 2.3 to 0.4 mg/L for only 20 minutes after stopping the inflow, followed by substantial release of phosphorus up to 4 mg/L under anaerobic condition. Jar test showed that the minimum alum doses to reduce the initial $PO_4$-P below 0.2 mg/L were 2 and 9 mol-Al/mol-P in the wastewater and the activated sludge from the membrane tank, respectively. It implies that a pre-coagulation in influent is more cost-efficient for phosphorus removal than the coagulation in the bioreactor. On the result of NUR test, there were little difference in terms of denitrification rate and contents of readily biodegradable COD between raw wastewater and pre-coagulated wastewater. When adding alum into the aerobic tank, alum doses above 26 mg/L as $Al_2O_3$ caused inhibitory effects on ammonia oxidation. Using the two-stage coagulation control based on pre-coagulation, the P concentration in the MBR effluent was kept below 0.2 mg/L with the alum of 2.7 mg/L as $Al_2O_3$, which was much lower than 5.1~7.4 mg/L as $Al_2O_3$ required for typical wastewater treatment plants. During the long-term operation of MBR, there was no change of the TMP increase rate before and after alum addition.

Life Cycle Assessment of the Carbon Emissions of MLE process and Denitrification Process Using Granular Sulfur (MLE공법과 황이용 탈질 프로세스의 전과정 탄소 배출량 평가)

  • Moon, Jin-young;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.619-627
    • /
    • 2012
  • In order to determine reduction of greenhouse gas emissions (GHGs) when the submerged membrane bioreactor with granular sulfur (MBR-GS) is used in wastewater treatment plant (WTP), the amount of GHGs was compared and analyzed in the advanced treatment process of P wastewater treatment plant (WTP). The amount of GHGs was estimated by classifying as construction and operation phase in WTP. The amount of GHGs in construction phase was evaluated from multiplying raw materials by using carbon emission factors. Also the amount of GHGs in operating phase was calculated by using total electricity consumption and carbon emission factor. The construction of anoxic tank and secondary settling tank is unnecessary, because the MBR-GS conducts simultaneously the nitrification and denitrification in aeration tank and filtration by hollow fiber membrane. The amount of $CO_2$, $CH_4$, and $N_2O$ emitted by constructing the MBR-GS was 6.44E+06 kg, 8.16E+03 kg and 1.38E+01 kg, respectively. The result shows that the GHGs was reduced about 47 % as compared with the construction in the MLE process. In operating the MBR-GS, the electricity is not required in the biological reactor and secondary setting tank. Thus, the amount of $CO_2$, $CH_4$, and $N_2O$ emitted by operating in the MBR-GS was 7.39E+05 kg/yr, 5.80E+02 kg/yr and 2.44E+00 kg/yr, respectively. The result shows that the GHGs were reduced about 37 % as compared with the operation in the MLE process. Also, $LCCO_2$(Life Cycle $CO_2$) was compared and analyzed between MLE process and MBR-GS. The amount of $LCCO_2 $emitted from the MLE process and MBR-GS was 3.56E+04 ton $CO_2$ and 2.12E+04 ton $CO_2$, respectively. The result shows that the GHGs in MBR-GS were reduced to about 40 % as compared in the MLE process during life cycle. As a result, sulfur-utilizing autotrophic denitrification process (SADP) is expected to be utilized as the cost-effective advanced treatment process, owing to not only high nitrogen removal efficiency but also the GHGs reduction in construction and operation stage.

Enhancement of Sewage Treatment Efficiencies by Recirculation in Absorbent Biofilter System (재순환에 의한 흡수성 바이오필터 시스템의 오수처리효율 향상)

  • Kwun, Soon-Kuk;Cheon, Gi-Seol;Kim, Song-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.69-76
    • /
    • 2005
  • An Absorbent Biofilter System (ABS) combined with the recirculation process was investigated for the feasible application in additional removing of organics (BOD, SS) as well as nutrients (TN, TP) from small Community wastewater in Korea. Polyurethane biofilter media with high porosity and large surface area were /used for the aerobic system. A part of treated wastewater was recirculated into the anoxic septic tank to promote removal of nutrients. The concentrations of BOD and SS of treated wastewater satisfied the regulations for small on-site wastewater treatment facility (10 mg/L) during the overall experimental period. The effluent concentrations of BOD and SS were decreased with enhancement of removal efficiencies of 95.7 and $96.7\%$. The nitrogen and phosphorus removal efficiencies by the recirculation increased to $52.9\%\;and\;43.2\%$ in average during the overall experimental period, respectively. With the improvement, these values were increased as much as additional 42 and $18\%$ compared with those of non-recirculation. The rates of nitrification and denitrification were enhanced showing $65\~77\%\;and\;42\~92\%$, respectively. The described process modification is a low cost and effective method of enhancing nitrogen and phosphorus removal, especially on existing systems without changing major design components of a treatment facility.