• Title/Summary/Keyword: anoxic bed

Search Result 18, Processing Time 0.025 seconds

Characteristics of Organics and Nitrogen Removal with the Recycle Ratio in Anoxic / Oxic Packed Bed Process (충전탑형 무산소/호기 공정에서 반송비에 따른 유기물 및 질소 제거 특성)

  • 선용호
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1261-1265
    • /
    • 2002
  • This study was focused on the investigation of the characteristics of organics and nitrogen removal with the recycle ratio in anoxic/oxic(A/O) packed bed process that consisted of the anoxic reactor and the aerobic reactor. As increasing the recycle ratio by 0.5, 1.0, 2.0, the COD removal efficiency increased by 94.0%, 98.5%, 98.8% respectively. The aerobic reactor showed the perfect nitrification efficiency by 98.5%, 99.2%, 98.0% respectively. The T-N removal efficiency with the recycle ratio, increased by 56%, 67%, 70% respectively. As increasing the recycle ratio by 0.5, 1.0, 2.0, T-P removal efficiency decreased by 62.1%, 57.4%, 51.3% respectively. The process by releasing the stored phosphorus in the anoxic reactor and uptaking the excess phosphorus in the aerobic reactor, occurred well comparatively when recycle ratio is 0.5. But this process did not occur when the recycle ratio is 1.0 and 2.0. And optimum pH of nitrification was about 6~7 and alkalinity decreased as nitrification rate increased. As increasing the recycle ratio in the anoxic reactor, DO concentration and ORP increased.

Comparative study on response of thiocyanate shock load on continuous and fed batch anaerobic-anoxic-aerobic sequential moving bed reactors

  • Sahariah, B.P.;Chakraborty, S.
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • A comparative study on response of a toxic compound thiocyanate ($SCN^-$) was carried out in continuous and fed batch moving bed reactor systems. Both systems had three sequential anaerobic, anoxic and aerobic reactors and operated at same hydraulic retention time. Feed $SCN^-$ was first increased from 600 mg/L to 1,000 mg/L for 3 days (shock 1) and then from 600 to 1,200 mg/L for 3 days (shock 2). In anaerobic continuous reactor, increase of effluent COD (chemical oxygen demand) due to shock load was only 2%, whereas in fed batch reactor it was 14%. In anoxic fed batch reactor recovery was partial in terms of $SCN^-$, phenol, COD and $NO{_3}{^-}$-N and $NO{_2}{^-}$-N removals and in continuous reactor complete recovery was possible. In both systems, inhibition was more significant on aerobic reactors than anaerobic and anoxic reactors. In aerobic reactors ammonia removal efficiency deteriorated and damage was irreversible. Present study showed that fed batch reactors showed higher substrate removal efficiency than continuous reactors during regular operation, but are more susceptible to toxic feed shock load and in nitrifying reactor damage was irreversible.

Development of Sewage Treatment Apparatus for Detached House in Agricultural Village by Natural Purification Method (자연정화공법에 의한 농촌 전원 독립가구 하수처리장치 개발)

  • Seo, Dong-Cheol;Park, Mi-Ryoung;Kim, Hyung-Jun;Cho, In-Jae;Lee, Hong-Jae;Sung, Sun-Jin;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.202-210
    • /
    • 2006
  • To develop small-scale sewage treatment apparatus for detached house of agricultural village, a small-scale sewage treatment apparatus by natural purification method that consisted of packaged form of aerobic, anoxic and anaerobic bed was constructed. The efficiency of sewage treatment according to the sewage treatment method, sewage loading, and the injection method of sewage were investigated for small-scale sewage treatment apparatus of packaged form of aerobic, anoxic and anaerobic bed. The removal rate of pollutants according to the sewage treatment method for small-scale sewage treatment apparatus was high in the order of aerobic-anoxic-anoxic bed < aerobic-anoxic-anaerobic bed. The optimum filter media in small-scale sewage treatment apparatus was a broken stone. The removal rate of pollutants according to sewage loading in small-scale sewage treatment apparatus was high in the order of $1,200L/m^2{\cdot}day\fallingdotseq900L/m^2{\cdot}day\fallingdotseq600L/m^2{\cdot}day$. The removal rate of pollutants according to injection method of sewage in small-scale sewage treatment apparatus was high in the order of continuous injection $\fallingdotseq$ intermittent injection. When loaded under the optimum conditions, removal rate of BOD, COD, SS, T-N and T-P were 99, 95, 99, 83 and 96%, respectively, through this 3-stepped small-scale treatment apparatus arrayed with the order of aerobic, anoxic and anaerobic bed.

Behavior and Decomposition Velocity of Pollutants on Various Forms from Domestic Sewage in Small-scale Sewage Treatment Plant by Natural Purification Method (자연정화공법에 의한 농촌 전원독립가구 하수처리장에서 하수 중 오염물질의 존재형태별 거동과 분해속도)

  • Seo, Dong-Cheol;Kim, Hyung-Jun;Park, Woo-Young;Lim, Jong-Sir;Hwang, Seung-Ha;Park, Chan-Hoon;Choi, Jeong-Hwan;Lee, Hong-Jae;Lee, Do-Jin;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • Behavior and decomposition velocity of pollutants on various forms from domestic sewage in sewage treatment plant were investigated in order to obtain the basic data for improving the removal efficiency of pollutants and to reduce the area in constructed wetland by natural purification method. The removal amounts of BODs and CODs in aerobic bed were significantly higher than those of the other beds. In aerobic bed, the removal amounts of IBOD and ICOD were more than those for SBOD and SCOD, respectively, whereas the removal amounts of BODs and CODs in anoxic and anaerobic beds were little different. The removal amounts of SSs in aerobic bed were also higher than those for the other beds, and the removal amounts of VSS in all beds were more than those for FSS. The removal amounts of DTN and DTP in all beds were more than those for STN and STP, respectively. In addition, the decomposition velocities of TBOD, TCOD and TSS in aerobic bed were 30.79, 17.15 and 29.96 $day^{-1}$. Moreover, the decomposition velocities of BODs, CODs and SSs in aerobic bed were very rapid than those in the other beds. On the other hand, the decomposition velocities of BODs, CODs and SSs in anoxic and anaerobic beds were a little different regardless of the forms of pollutant. The decomposition velocities constants of T-N in aerobic, anoxic and anaerobic beds were 4.78, 0.12 and 0.10 $day^{-1}$, respectively. Moreover, the decomposition velocities constants of T-P in aerobic, anoxic and anaerobic beds were 13.09, 0.12 and 0.13 $day^{-1}$ respectively. The decomposition velocity of T-Ns and T-Ps in aerobic bed were slightly rapid than those in the other beds, whereas the decomposition velocities of T-Ns and T-Ps in anoxic and anaerobic beds were slightly different regardless of the forms of pollutant.

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

Denitrification of Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기에서의 폐수 탈질화)

  • 신승훈;서일순;장인용
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.337-343
    • /
    • 2001
  • Activated carbon particles of 1.274 mm diameter and sand particles of 0.455 mm diameter were employed as the support of the biofilm formed in fluidized bed biofilm reactors(FBBRs) for the wastewater denitrification. Ethanol was used as the electron donor in the anoxic respiration. The steady-state biofilm thickness increased as the nitrate loading rate increased, and the activated carbon particles induced thicker biofilm than the sand particles. The FBBRs with sand support showed higher efficiency and rate of the nitrate removal than those with activated carbon support, and exhibited the biomass concentration of 37 kg/㎥ and the nitrate removal rate of 21 kg N/㎥d.

  • PDF

Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거법의 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

Nitrogen Removal in the Multi-stage Bed Attached Growth Process of $A^2/O$ System with Interanal Recycle Ratio (다단층 부착성장 공법($A^2/O$향)에서 순환비에 따른 질소제거)

  • 최규철;윤용수;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 1997
  • The process which can stabilize water quality of treatment and improve nitrogen removal rate under the condition of high organic loading was developed by charging fibrous HBC media to single sludge nitrification-denitrification process. This process was operated easier, minimized the treatment cost, and shortened the retention time. To improve T-N removal rate, a part of nitrifing liquid at aerobic zone was recycled to anoxic zone by approximate internal recycle ratio. The experimental results are as follows ; T-N removal efficiency in the organic volumetric loading 0.14-0.19 kg/COD/m$^{3}$·d was obtained asmaxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.

  • PDF

Simultaneous Nitrification and Denitrification in a Fluidized Biofilm Reactor with a Hollow Fiber Double Layer Biofilm Media (이중층 중공사 생물막 담체를 이용한 유동층 생물막 반응기에서의 동시 질산화와 탈질)

  • 이수철;이현용;김동진
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.514-520
    • /
    • 2000
  • Simultaneous nitrification and denitrification of ammonia and organic compounds-containing wastewater were performed in a fluidized bed biofilm reactor with polysulfone(PS) hollow fiber as a double layer biomass carrier. The PS hollow fiber fragment has both aerobic and anoxic environments for the nitrifiaction and denitrification at the shell and lumen-side respectively. The reactor system showed about 80% nitrification efficiency stably throughout the ammonia load conditions applied in the experiment. Denitrification efficiency depended on organic load and C/N ratio. High free ammonia concentration and low dissolved oxygen resulted in nitrite accumulation which leads to enhance organic carbon efficiency in denitrification when compared to nitrate denitrification. The simultaneous nitrification and denitrification reactor system has an economic advantages in reduced chemical cost of organic carbon for denitrification as well as compact reactor configuration.

  • PDF

Nitrogen Removal in Fluidized Bed and Hybrid Reactor using Porous Media (다공성 담체를 이용한 유동상 및 하이브리드 반응기에서의 질소제거)

  • Jun, Byong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.542-548
    • /
    • 2005
  • A fluidized bed reactor containing porous media has been known to be effective for nitrogen and organic matters removal in wastewater. The porous media which attached microbes plays important roles in simultaneous nitrification/denitrification (SND) due to coexistence of oxic, anaerobic and anoxic zone. For SND reaction, oxygen and organic substrates should be effectively diffused from wastewater into the intra-carrier zone. However, the overgrowth heterotrophic microbes at the surface of porous media may restrict from substrates diffusion. From these viewpoints, the existence and effect of heterotrophic bacteria at surface of porous media might be the key point for nitrogen removal. A porous media-membrane hybrid process was found to have improved nitrogen removal efficiency, due to stimulated denitrification as well as nitrification. Microelectrode studies revealed that although intra-media denitrification rate in a conventional fluidized bed was limited by organic carbon, this limitation was reduced in the hybrid process, resulting in the increased denitrification rate from 0.5 to $4.2\; mgNO_3-N/L/hr$.