• Title/Summary/Keyword: anorthositic rocks

Search Result 15, Processing Time 0.022 seconds

On the Origin of Anorthosite in the Area of Hadong, Sancheong, Gyeongsang-namdo, Korea (하동일산청지역(河東一山淸地域)의 아노르도사이트의 성인(成因)에 관(關)하여)

  • Son, Chi Moo;Cheong, Ji Gon
    • Economic and Environmental Geology
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 1972
  • A large anorthositic mass outcropped as mushroom-like body extending up to 46km which occurs in the Hadong kaoline district of southern Korea. The anorthositic mass is in contact with the metamorphic, plutonic and sedimentary rocks. The metamorphic rocks are of granitic gneiss and banded gneiss, etc; the plutonic rocks are of gabbroic and dioritic rocks, schistose granite, syenite, diorite and granite. The sedimentary rocks include siltstone and pebbly sandstone of Lower Gyeongsang System, Cretaceous in age. The anorthositic mass shows a gradational contact with the metamorphic and sedimentary rocks, and is cut by the plutonic rocks except gabbroic and dioritic rocks. The anorthositic mass is leucocratic in the central portion of the mass, and, in turn, grades to rock phases in which ma/ic minerals are irregularly scattered, then to the well-lineated rock and finally to the banded gneiss. Lineation of the anorthositic mass is accordant with that of the surrounding banded gneiss, and the lineation continues toward the gneiss. In some places, the rock phases in which mafics are scattered is gradational with adjacent sedimentary rocks. The anorthositic mass in contact with gabbroic and dioritic rocks shows spotted features. Various replacement features seen under the microscope and paragenetic sequence of the mineral components in the anorthositic rocks cannot be considered as the origin of magmatic crystallization. From the field and microscopic observations, it is concluded that the anorthositic mass was formed from replacement of the metamorphic rocks and plutonic rocks by the anorthositic magma.

  • PDF

Differentiation of the Plutonic Rocks in Saengcho-myon, Sancheong-gun:Trace Element Modelling for the Magmatic Differentiation (산청군 생초면 일대에 분포한 심성암체의 분화에 관한 연구:마그마분화의 미량원소 모델링)

  • 정지곤;김원사;서병민
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.69-89
    • /
    • 1991
  • The anorthositic rocks and the many other plutons which are of different varieties and age were distributed in the northern extremity of the distributed areas of H-S anorthositic rocks. The purpose of this study was to find plutons which had comagmatic relationships, and to make clear the magmatic process of anorthositic magma. The plutons were classified, and the petrological and the geochemical characteristics of the plutons were compared and researched in this study. And, because, like anorthosite, the rocks which intrude in the deep crust accompany assimilation, an AFC model calculation was performed to make the differentiation process of the anorthositic rocks clear. The plutons in this area were classified into three groups, and the three groups were composed of the Precambrian anorthositic rocks and related rocks, the Jurassic gabbro, and the plutons of undnown age. The anorthositic magma was differentiated from the anorthositic rocks through the tonalite to the alkali-feldspar granite, and it was differentiated under K, Mg, Fe free/lack condition. It was found from the result of AFC model that the anorthositic rocks were differentiated by fractional crystallization, but they were assimilated with wall-rocks, and the assimilation was performed at the rate of r$\leq$0.1. The plutons which intruded the anorthositic rocks subsequently consisted of the gabbro, the megacrystic granite, the fine-grained granite, and the gneissose granite. But they were formed by the repeated intrusion of magma, which may, or may not, be of the same origin. According to the result of the RCF model, these plutons were differentiated by simple fractional crystallization, and they were assimilated relatively less than the anorthositic rocks.

  • PDF

Anisotropy of Magnetic Susceptibility (AMS) of Anorthositic Rocks in the Hadong-Sanchong Area (하동-산청지역에 분포하는 회장암질암에 대한 대자율 비등방성 연구)

  • Kim, Seong Uk;Choe, Eun Gyeong;Kim, In Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.169-178
    • /
    • 1999
  • Low-field anisotropy of magnetic susceptibility (AMS) was measured with 247 samples from 17 sites of Pre-Cambrian anorthositic rocks in the Hadong-Sanchong area, southwestern part of the Ryongnam Block. Tectonic stress-direction is defined by the minimum susceptibility (k3) direction, and flow-direction by the maximum susceptibility (k1) direction. Five sites rendered self-consistent NW-SE site-mean tectonic stress-direction. Even though a general fold test for every site was not possible due to the homoclinal nature of the bedding attitudes, a site with various bedding attitudes shows far better clustering of the k3-direction before the bedding-tilt correction. The in-situ NW-SE tectonic stress-direction is consistent over the study area and compatible with petrographic foliation observed in metamorphic rocks in and arround the study area, suggesting a regional compressive force acted after the emplacement of the anorthositic rocks. On the other hand, flow-directions obtained from six sites varies from site to site. Strong-field IRM experiments show predominance of titanomagnetites over a small amount of hematite in some samples.

  • PDF

Some Aspects of Kaoline-Pyrophyllite Deposits in Southern Korea (한반도(韓半島) 남부지역(南部地域)의 고령토-납석광상(鑛床) 생성기구(生成機構))

  • Sang, Ki Nam
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.43-52
    • /
    • 1986
  • Kaolin-pyrophyllite are locally abundant in the three hydrothermal areas at Yangsan-Tongnae area, Hadong-Sancheong area and Haenam area, deposits are originally composed of acidic volcanic rocks and anorthositic rocks in Hadong-Sancheong area. The clay deposits are formed in the near shallow depths environment through acid hydrothermal alteration. Hadong-Sancheong halloysite deposits are formed by alteration of anorthosite. These differences are mainly on the various country rocks, geological structure and properties of hydrothermal solutions. Country rock is mostly underlain by rhyolitic tuffaceous and anorthositic rocks and a large number of clay deposits were formed during volcanic activity through upper Cretaceous-lower Tertiary. Intrusive rocks is broadly distributed in this area and clay deposits are variable in shapelayer and funnel typed. Zonal pattern of mineral assemblage is as follows, Yangsan-Tongnae deposits-kaolinite, pyrophyllite, dumortierite, andalusite and sericite, Hadong-Sancheong-mostly halloysite, and Haenam-dickite, pyrophyllite, alunite and diaspore. The difference in the zonal pattern of altered rock is considered to depend on differences in the initial acidity of related hydrothermal solution, initial acidity was controlled by the oxygen fugacity.

  • PDF

Oxygen and Hydrogen Isotope Studies of Fluid-Rock Interaction of the Radons-Sancheong Anorthositic Rocks (하동-산청 회장암질암의 유체-암석 상호반응에 대한 산소와 수소 동위원소 연구)

  • Park Young-Rok;Ko Bokyun;Lee Kwang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.224-237
    • /
    • 2004
  • The anorthositic rocks of the study area are divided into the northern Sancheong and southern Hadong anorthositic rocks depending on the different distribution patterns and lithologies. In order to evaluate the characteristics of the hydrothermal systems developed in the study area, oxygen and hydrogen isotopic compositions of the anorthositic rocks were measured. Oxygen isotopic values of the plagioclase exhibit an interesting spatial distribution. Plagioclase collected from the Sancheong anorthositic rocks in the northern part tends to have a relatively restricted range of $\delta$$^{18/0}$ values between 7.3 and 8.8$\textperthousand$, which are heavier than 'normal' $\delta$$^{18/O}$ value (6-6.5$\textperthousand$) typical for plagioclase of the fresh mantle-derived anorthosite, whereas plagioclase from the southern part is characterized by a wide range of $\delta$$^{18/O}$ values between -4.4 and 8.2$\textperthousand$ and much lighter values than 'normal' value for plagioclase of the fresh mantle-derived anorthosite. Plagioclase from the middle part has $\delta$$^{18/O}$ values heavier than the plagioclase from the southern part, but lighter than that from the northern part. The spatial distribution of $\delta$$^{18/O}$ values suggests that the decoupled hydrothermal flow systems might have been developed in the study area. Meteoric water dominated in the hydrothermal flow systems developed in the southern area, whereas magmatic fluid dominated in the northern area. The relationship between water content and hydrogen isotopic composition of anorthosites shows a positive correlation. The positive correlation indicates that fluids exsolved from magma during magmatic differentiation caused deuteric alteration of anorthositic rocks involving replacement of pyroxenes to amphiboles. After the deuteric alteration, hydrothermal system developed by meteoric water dominated the southern area, and erased record of the hydrothermal system developed by magmatic fluid at earlier stage. However, the development of meteoric hydrothermal system has been limited in the southern area only, and could not affect the Sancheong anorthositic rocks in the northern area. The abundant occurrences of secondary alteration minerals such as sericite, calcite, and chlorite in the southern Hadong anorthosite relative to the northern Sancheong anorthositc seem to be related to the overlapping of two distinct hydrothermal systems in the southern area.

Metamorphism of Anorthositic Rocks with Respect to Amphiboles in Hadong Area (각섬석류를 활용한 하동지역 회장암체의 변성작용에 관한 연구)

  • Kwak, Ji Young;Choi, Jin Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.221-231
    • /
    • 2015
  • Precambrian Jirisan gneiss complex suffered retrograde metamorphism ranging from granulite facies to the amphibolite facies and/or greenschist facies. Intrusive anorthositic rocks in gneiss complex are influenced by late metamorphism. Mafic mineral in anorthositic rock composed mainly of amphiboles, which can anticipate the information about metamorphic conditions and metamorphic facies. Amphiboles from anorthositic rock show subhedral to anhedral in shape and mostly blueish green and/or green in colour in plane polarized light. Some of brownish amphiboles show zonal texture with brownish to blueish green in color from core to rim. Reaction parts in clinopyroxene which exchange with amphibole. It suggests retrograde metamorphism and/or alteration. Amphiboles composing anorthositic rocks can be classified into two types depending on the size and occurrence of amphibole. The first type is microcrystalline amphibole occurring matrix [Group I: ferrohornblende]. The second type is amphibole with 1 mm or larger in size, which is usually occurred in the boundary between opaque mineral and plagioclase [Group II: ferropargasite]. Electron microscopic analyses base on the $Al^{vi}$ composition in amphiboles suggest that the metamorphic pressure of anorthositic rock was low with 5 kbar or less. Ti compositional range in amphibole and representing hornblende+ plagioclase+garnet+biotite+chlorite mineral assemblage suggest that metamorphic facies of anorthositic rock is in amphibolite facies.

Mineralogy of Kaolin from Hadong-sancheong Area, Korea (하동-산청지역에서 산출되는 고령토의 광물학적 연구)

  • 김수진;정기영;이수재;권석기
    • Journal of the Mineralogical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1989
  • The kaolin deposits in Hadong-Sancheong area, have been formed by supergene weathering of anorthositic rocks including anorthosite, leucogabbro, and gabbro. Kaolin consists chiefly of halloysite(10$\AA$) and kaolinite with other minerals such as illite, vermiculite, plagioclase, hornblende, quartz amorphous materials(allophane and siica), goethite, and hematite. Goethite and hematite are the major coloring agents of the reddish brown and other colored kaolins. Other common accessory minerals are magnetite, ilmentite, anatase, gibbsite, I/S, C/V, chlorite, lithiophorite, and birnessite. Paragonite, dravite, laumontite, clinozoisite, muscovite, scolecite, stellerite are locally found. Al substitution of Fe in goethite and hematite decreases from the surface zone toward the deeper zone. The kaolin deposits show three horizontal zoning; the upper reddish brown, middle pink, and lower white zones. All the zones are characterized by somewhat different mineralogy. The factors for the formation of kaolin deposits in Hadong-Sancheong area are 1) the presence of anorthositic rocks, 2) the low flat or gentle topography, 3) the favorable climate, and 4) the long-continued preservation of kaolins with-out erosion.

  • PDF

Genesis of Clay Minerals in the Vicinity of Gwangpo Bay, Southern Coast of Korea (광포만 집수유역내에 분포하는 점토광물의 성인에 관한 연구)

  • PARK Maeng-Eon;SONG Yong-Sun;KIM Hee-Joon;KIM Dae-Choul;PAIK In-Sung;CHUNG Sang-Yong;SONG Shi-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.259-268
    • /
    • 1988
  • Clay deposits in the vicinity of the Gwangpo Bay, southern coast of Korea, occur restrictively in anorthositic masses. Laumontite and meta-halloysite are the predominant clay minerals with iron oxides at the uppermost surface. Chlorite and halloysite occur in deeper zone. Beneath the main clay horizon, but not above, some anorthositic rocks are pervasively altered to quartz, sericite, chlorite, pyrite and montmorillonite along the hydrothermal channels. The hypotheses of hydrothermal and weathering origins of the clay minerals are tested by multi-component equilibrium calculations of the reactions of modified hydrothermal water and rain water with anorthositic rocks at $100^{\circ}C\;and\;25^{\circ}C$, respectively. The calculated mineralogy from the reaction with rain water resembles natural mineral assemblage except for abundance in laumontite. The result implies that the weathering process is the main machanism of the formation of clay deposits in the area.

  • PDF

Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their genetic relationship (지리산 지역 차노카이트와 함티탄철석 회장암질암의 Sm-Nd 광물연대 및 성인적 관계)

  • 박계헌;김동연;송용선
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 2001
  • The charnockite of Jirisan area occurs within the Precambrian high grade metamorphic terrane associated with anorthosite body as many foreign examples. Sm-Nd ages were determined from whole rock-garnet pairs, which turned out $1827\pm$32($2\sigma$) Ma for the massive charnockite and $1820\pm$22(2$\sigma$) Ma for the foliated charnockite with $$\varepsilon$_{Nd}(T)$ of $-5.5\pm$0.2 and $-6.0\pm$0.5 respectively. $^{87}Sr/^{86}Sr$ initial ratios calculated with the these ages are 0.71319 and 0.71532 respectively. The fact that massive and foliated charnockites show identical age, identical Nd isotopic initial ratio, and similar Sr isotopic initial ratios suggest that they were generated at the same time from the same material even through their present textures are different. Initial ratios of Nd and Sr of the charnockites are quite distinct from the mantle values indicating the influence of continental crust. Sm-Nd age determined from the titanium bearing anorthositic rocks intruding the anorthosite body, using mineral separates of garnet, plagioclase, and mafic fraction, is $1792\pm$90(2$\sigma$) Ma with $$\varepsilon$_{Nd}(T)=-3.9$\pm$0.2$. The ^${87}Sr/^{86}Sr$ initial ratios calculated with this age are 0.70616~0.70619. The charnockites and the anorthositic rocks occurring in contact each other also reveal the same age within the error, which suggest a genetic relationship between them. However, chemical compositions of the charnockites and Hadong-Sancheong anorthosites cannot be explained by igneous differentiation. Their differences in Nd and Sr initial isotopic ratios indicate different source materials. Therefore, temporal association between them suggests the possibility of the anorthosite acting as a thermal source for the generation of the charnockite as other studies.

  • PDF

The Overview of Layered structures in Mafic - Ultramafic Macheon Intrusion (고철질-초고철질 마천관입암의 층상구조 개관)

  • Song, Yong-Sun;Kim, Dong-Yeon;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.162-179
    • /
    • 2007
  • Macheon Layered Intrusion (MLI) which intruded into Precambrian gneiss complex of the northern Jirisan area, southeastern part of Youngnam (or Sobaeksan) Massif, is a layered mafic-ultramafic complex of Triassic age (ca. 223 Ma). The MLI is divided into Layered Series and Laminated Series. Layered Series is subdivided into Central Zone (Lower Zone) consisting of olivine gabbros and Peripheral Zone (Middle or Upper Zone) consisting of hornblende gabbros based on the type of cumulus texture and the main mafic phase. The Central Zone of Layered Series comprises thinly laminated olivine gabbros and uniform or thickly laminated coarse olivine gabbros which consist of mela-gabbro, troctolite, leuco-troctolite, and anorthositic rocks. Laminated Series is also subdivided into quartz-bearing biotite-pyroxene gabbros and homblende diorite and both have variable amount of interstitial quartz and microcline. Laminated series display moderately to slightly developed igneous lamination which is defined by the planar alignment of lath-shape plagioclases. Chilled margin of quartz-bearing biotite-pyroxene gabbro with surrounding Precambrian gneisses insists shallower intrusion of more felsic cognate magma evolved in the deep a little later. Rocks of Layered Series have orthocumulus to adcumulus olivine, adcumulus to intercumulus plagioclase, and intercumulus to heteradcumulus pyroxene and hornblende. Magmatic modally grading, folding, and cross-lamination are not rarely occurred in thinly layered rocks. These textural characteristics define main mechanisms of the formation of layered and laminated structure in mafic-ultramafic rocks of Macheon Layered Intrusion are gravity settling and in-situ crystallization associated with slumping and density current.