• Title/Summary/Keyword: anomaly-based detection

Search Result 447, Processing Time 0.025 seconds

Application of Highland Kimchi Cabbage Status Map for Growth Monitoring based on Unmanned Aerial Vehicle

  • Na, Sang-Il;Park, Chan-Won;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.469-479
    • /
    • 2016
  • Kimchi cabbage is one of the most important vegetables in Korea and a target crop for market stabilization as well. In particular Kimchi cabbages in a highland area are very sensitive to the fluctuations in supply and demand. Yield variability due to growth conditions dictates the market fluctuations of Kimchi cabbage price. This study was carried out to understand the distribution of the highland Kimchi cabbage growth status in Anbandeok. Anbandeok area in Gangneung, Gangwon-do, Korea is one of the main producing districts of highland Kimchi cabbage. The highland Kimchi cabbage status map of each growth factor was obtained from unmanned aerial vehicle (UAV) imagery and field survey data. Six status maps include UAVRGB image map, normalized difference vegetation index (NDVI) distribution/anomaly map, Crop distribution map, Planting/Harvest distribution map, Growth parameter map and Growth disorder map. As a result, the highland Kimchi cabbage status maps from May 31 to Sep. 6 in 2016 were presented to show spatial variability in the field. The benefits of the highland Kimchi cabbage status map can be summarized as follows: crop growth monitoring, reference for field observations and survey, the relative comparison of the growth condition in field scale, evaluation of growth in comparison of average year, change detection of annual crops or planting areas, abandoned fields monitoring, prediction of harvest season etc.

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.

Analsis Of Outliers In Real Estate Prices Using Autoencoder (Autoencoder 기법을 활용한 부동산 가격 이상치 분석)

  • Kim, Yoonseo;Park, Jongchan;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1739-1748
    • /
    • 2021
  • Real estate prices affect countries, businesses, and households, and many studies have been conducted on the real estate bubble in recent soaring real estate prices. However, if the real estate bubble prediction simply compares the real estate price, or if it does not reflect key psychological variables in real estate sales, it can be judged that the accuracy of the bubble prediction model is poor. The purpose of this study is to design a predictive model that can explain the real estate bubble situation by region using the autoencoder technique. Existing real estate bubble analysis studies failed to set various types of variables that affect prices, and most of them were conducted based on linear models. Thus, this study suggests the possibility of introducing techniques and variables that have not been used in existing real estate bubble studies.

A Survey on Deep Learning-based Analysis for Education Data (빅데이터와 AI를 활용한 교육용 자료의 분석에 대한 조사)

  • Lho, Young-uhg
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.240-243
    • /
    • 2021
  • Recently, there have been research results of applying Big data and AI technologies to the evaluation and individual learning for education. It is information technology innovations that collect dynamic and complex data, including student personal records, physiological data, learning logs and activities, learning outcomes and outcomes from social media, MOOCs, intelligent tutoring systems, LMSs, sensors, and mobile devices. In addition, e-learning was generated a large amount of learning data in the COVID-19 environment. It is expected that learning analysis and AI technology will be applied to extract meaningful patterns and discover knowledge from this data. On the learner's perspective, it is necessary to identify student learning and emotional behavior patterns and profiles, improve evaluation and evaluation methods, predict individual student learning outcomes or dropout, and research on adaptive systems for personalized support. This study aims to contribute to research in the field of education by researching and classifying machine learning technologies used in anomaly detection and recommendation systems for educational data.

  • PDF

One-Class Classification based on Recorded Mouse Activity for Detecting Abnormal Game Users (마우스 동작 기록 기반 비정상 게임 이용자 감지를 위한 단일 클래스 분류 기법)

  • Minjun Song;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.39-42
    • /
    • 2023
  • 최근 온라인 게임 산업이 급속도로 확장됨과 더불어 Gamebot과 같은 비정상적인 프로그램으로 인한 게임 서비스 피해사례가 급격하게 증가하고 있다. 특히, 대표적인 게임 장르 중 하나인 FPS(First-Person Shooter)에서 Aimbot의 사용은 정상적인 이용자들에게 재미 요소를 잃어버리게 하고 상대적 박탈감을 일으켜 게임의 수명을 줄이는 원인이 된다. 비정상 게임 이용자의 근절을 위해서 메모리 변조 및 불법 변조 프로그램 접근 차단 기법과 불법 프로그램 사용의 패턴 모니터링과 같은 기법들이 제안되었지만, 우회 프로그램 및 새로운 패턴을 이용한 비정상적인 프로그램의 개발에는 취약하다는 단점이 있다. 따라서, 본 논문에서는 정상적인 게임 이용자의 패턴만 학습함으로써 비정상 이용자 검출을 가능하게 하는 딥러닝 기반 단일 클래스 분류 기법을 제안하며, 가장 빈번하게 발생하는 치트(Cheat) 유형인 FPS 게임 내 Aimbot 사용 감지에 초점을 두었다. 제안된 비정상 게임 이용자 감지 시스템은 정상적인 사용자의 마우스 좌표를 데카르트 좌표계(Cartesian coordinates)와 극좌표계(Polar coordinates)의 형태로 패턴을 추출하는 과정과 정상적인 마우스 동작 기록으로 부터 학습된 LSTM 기반 Autoencoder의 복원 에러에 따른 검출 과정으로 구성된다. 실험에서 제안된 모델은 FPS 게임 내 마우스 동작을 기록한 공개 데이터셋인 CSGO 게임 데이터셋으로 부터 학습되었으며, 학습된 모델의 테스트 결과는 데카르트 좌표계로부터 훈련된 제안 모델이 비정상 게임 이용자를 분류하는데 적합함을 입증하였다.

  • PDF

Research on BGP dataset analysis and CyCOP visualization methods (BGP 데이터셋 분석 및 CyCOP 가시화 방안 연구)

  • Jae-yeong Jeong;Kook-jin Kim;Han-sol Park;Ji-soo Jang;Dong-il Shin;Dong-kyoo Shin
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.177-188
    • /
    • 2024
  • As technology evolves, Internet usage continues to grow, resulting in a geometric increase in network traffic and communication volumes. The network path selection process, which is one of the core elements of the Internet, is becoming more complex and advanced as a result, and it is important to effectively manage and analyze it, and there is a need for a representation and visualization method that can be intuitively understood. To this end, this study designs a framework that analyzes network data using BGP, a network path selection method, and applies it to the cyber common operating picture for situational awareness. After that, we analyze the visualization elements required to visualize the information and conduct an experiment to implement a simple visualization. Based on the data collected and preprocessed in the experiment, the visualization screens implemented help commanders or security personnel to effectively understand the network situation and take command and control.

Detection of Signs of Hostile Cyber Activity against External Networks based on Autoencoder (오토인코더 기반의 외부망 적대적 사이버 활동 징후 감지)

  • Park, Hansol;Kim, Kookjin;Jeong, Jaeyeong;Jang, jisu;Youn, Jaepil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.39-48
    • /
    • 2022
  • Cyberattacks around the world continue to increase, and their damage extends beyond government facilities and affects civilians. These issues emphasized the importance of developing a system that can identify and detect cyber anomalies early. As above, in order to effectively identify cyber anomalies, several studies have been conducted to learn BGP (Border Gateway Protocol) data through a machine learning model and identify them as anomalies. However, BGP data is unbalanced data in which abnormal data is less than normal data. This causes the model to have a learning biased result, reducing the reliability of the result. In addition, there is a limit in that security personnel cannot recognize the cyber situation as a typical result of machine learning in an actual cyber situation. Therefore, in this paper, we investigate BGP (Border Gateway Protocol) that keeps network records around the world and solve the problem of unbalanced data by using SMOTE. After that, assuming a cyber range situation, an autoencoder classifies cyber anomalies and visualizes the classified data. By learning the pattern of normal data, the performance of classifying abnormal data with 92.4% accuracy was derived, and the auxiliary index also showed 90% performance, ensuring reliability of the results. In addition, it is expected to be able to effectively defend against cyber attacks because it is possible to effectively recognize the situation by visualizing the congested cyber space.

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Implementation of Security Information and Event Management for Realtime Anomaly Detection and Visualization (실시간 이상 행위 탐지 및 시각화 작업을 위한 보안 정보 관리 시스템 구현)

  • Kim, Nam Gyun;Park, Sang Seon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.5
    • /
    • pp.303-314
    • /
    • 2018
  • In the past few years, government agencies and corporations have succumbed to stealthy, tailored cyberattacks designed to exploit vulnerabilities, disrupt operations and steal valuable information. Security Information and Event Management (SIEM) is useful tool for cyberattacks. SIEM solutions are available in the market but they are too expensive and difficult to use. Then we implemented basic SIEM functions to research and development for future security solutions. We focus on collection, aggregation and analysis of real-time logs from host. This tool allows parsing and search of log data for forensics. Beyond just log management it uses intrusion detection and prioritize of security events inform and support alerting to user. We select Elastic Stack to process and visualization of these security informations. Elastic Stack is a very useful tool for finding information from large data, identifying correlations and creating rich visualizations for monitoring. We suggested using vulnerability check results on our SIEM. We have attacked to the host and got real time user activity for monitoring, alerting and security auditing based this security information management.

Comparison of Sampling Techniques for Passive Internet Measurement: An Inspection using An Empirical Study (수동적 인터넷 측정을 위한 샘플링 기법 비교: 사례 연구를 통한 검증)

  • Kim, Jung-Hyun;Won, You-Jip;Ahn, Soo-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.6
    • /
    • pp.34-51
    • /
    • 2008
  • Today, the Internet is a part of our life. For that reason, we regard revealing characteristics of Internet traffic as an important research theme. However, Internet traffic cannot be easily manipulated because it usually occupy huge capacity. This problem is a serious obstacle to analyze Internet traffic. Many researchers use various sampling techniques to reduce capacity of Internet traffic. In this paper, we compare several famous sampling techniques, and propose efficient sampling scheme. We chose some sampling techniques such as Systematic Sampling, Simple Random Sampling and Stratified Sampling with some sampling intensities such as 1/10, 1/100 and 1/1000. Our observation focused on Traffic Volume, Entropy Analysis and Packet Size Analysis. Both the simple random sampling and the count-based systematic sampling is proper to general case. On the other hand, time-based systematic sampling exhibits relatively bad results. The stratified sampling on Transport Layer Protocols, e.g.. TCP, UDP and so on, shows superior results. Our analysis results suggest that efficient sampling techniques satisfactorily maintain variation of traffic stream according to time change. The entropy analysis endures various sampling techniques well and fits detecting anomalous traffic. We found that a traffic volume diminishment caused by bottleneck could induce wrong results on the entropy analysis. We discovered that Packet Size Distribution perfectly tolerate any packet sampling techniques and intensities.