First branchial cleft anomaly is a very rare disease and exhibits various clinical presentations. Therefore, the diagnosis of first branchial cleft anomaly may be difficult; the condition is often misdiagnosed and mismanaged. Accurate diagnosis is very important, because if not diagnosed correctly, patients with first branchial cleft anomaly would be treated with local incision and drainage repeatedly. We report two cases of first branchial cleft anomaly. The first patient visited for recurrent swell and discharge in the infra-auricular area with a history of previous incision and drainage. The other patient showed a cystic mass in the infra-auricular area and all of them were misdiagnosed initially by their treating specialists elsewhere. The objective of this study is to share our experiences of first branchial cleft anomaly, and emphasize its various clinical patterns and the significance of accurate diagnosis.
최근에는 대부분의 인터넷 공격은 악성코드(Malware)에 의한 잘 알려지지 않은 제로데이 공격 형태가 주류를 이루고 있으며, 이미 알려진 공격유형들에 대해서 탐지하는 오용탐지 기술로는 이러한 공격에 대응하기가 어려운 실정이다. 또한, 다양한 공격 패턴들이 인터넷상에 나타나고 있기 때문에 기존의 정보 보호 기술로는 한계에 다다르게 되었고, 웹기반 서비스가 보편화됨에 따라 인터넷상에 노출된 웹 서비스가 주공격 대상이 되고 있다. 본 논문은 인터넷상의 트래픽 유형을 분류하고, 각 유형에 따른 이상 징후를 탐지하고 분석할 수 있는 비정상행위공격 탐지기술(Anomaly Intrusion Detection Technologies)을 포함하고 있는 위협관리 시스템(Threat Management System)을 제안한다.
Anomaly detection holds paramount significance across diverse fields, encompassing fraud detection, risk mitigation, and sensor evaluation tests. Its pertinence extends notably to the military, particularly within the Warrior Platform, a comprehensive combat equipment system with wearable sensors. Hence, we propose a data-compression-based anomaly detection approach tailored to unlabeled time series and sequence data. This method entailed the construction of two distinctive features, typicality and atypicality, to discern anomalies effectively. The typicality of a test sequence was determined by evaluating the compression efficacy achieved through the pattern dictionary. This dictionary was established based on the frequency of all patterns identified in a training sequence generated for each sensor within Warrior Platform. The resulting typicality served as an anomaly score, facilitating the identification of anomalous data using a predetermined threshold. To improve the performance of the pattern dictionary method, we leveraged atypicality to discern sequences that could undergo compression independently without relying on the pattern dictionary. Consequently, our refined approach integrated both typicality and atypicality, augmenting the effectiveness of the pattern dictionary method. Our proposed method exhibited heightened capability in detecting a spectrum of unpredictable anomalies, fortifying the stability of wearable sensors prevalent in military equipment, including the Army TIGER 4.0 system.
여러 분야에서 이상탐지의 중요성이 강조됨에 따라, 다양한 데이터 유형과 이상치 유형에 대한 이상탐지 알고리즘이 개발되고 있다. 하지만 이상탐지 알고리즘의 성능은 주로 공개 데이터 세트에 대해 측정될 뿐 특정 유형의 이상치에서 나타나는 각 알고리즘의 성능은 확인되지 않고 있으므로, 분석 상황에 맞는 적절한 이상탐지 알고리즘 선택에 어려움이 있다. 이에 본 논문에서는 이상치의 유형과 다양한 데이터 속성을 먼저 파악하여, 이를 기반으로 적절한 이상탐지 알고리즘 선택에 도움을 줄 수 있는 방안을 제시하고자 한다. 구체적으로 본 연구에서는 지역, 전역, 종속성, 그리고 군집화의 총 4가지 이상치 유형에 대해 이상탐지 알고리즘의 성능을 비교하고, 추가 분석을 통해 라벨 수준, 데이터 개수, 그리고 차원 수가 성능에 미치는 영향을 확인한다. 실험 결과 이상치 유형에 따라 가장 우수한 성능을 나타내는 알고리즘이 다르게 나타나며, 이상치 유형에 대한 정보가 없는 경우에도 안정적인 성능을 보여주는 알고리즘을 확인했다. 또한 비지도 학습 기반 이상탐지 알고리즘의 성능이 지도 학습 및 준지도 학습 알고리즘의 성능보다 낮게 나타나는 유형을 확인하였다. 마지막으로 데이터 개수가 상대적으로 적거나 많을 때 대부분 알고리즘들의 성능이 이상치 유형에 더 강하게 영향을 받으며, 상대적으로 고차원일 경우 지역, 전역 이상치에서는 우수한 성능을 보였지만 군집화 이상치 유형에서 낮은 성능을 나타냄을 확인하였다.
본 연구는 한국에 있어서 1994년 하계한발의 지역적 분포특성과 지상기압장 및 500hPa면의 종관적 특성을 평년과 비교분석한 연구이다. 평년강수량에 대한 1994년 강수량의 백분율을 기준한 6월의 한발은 여수 중심의 남부지방, 7월은 한국 전역, 8월은 소백산맥 이동의 남동안에 심한 한발을 초래하여 강수와 시간적 공간적 변동성을 반영하고 있다. 6 8월의 한반도와 그 주변의 지상기압장의 기압편차가 정편차, 전국적인 한발이 나타난 7월은 부편차역에 속하여 대조를 이룬다. 1994년 하계에 한반도를 통과한 온대저기압은 그 통과 빈도가 낮을 뿐만 아니라 한반도로부터 남편, 혹은 북편되어 통과하여서 온대저기합성 강수의 출현빈도가 낮음을 알 수 있다. 6월의 한발시 500hPa면의 trough의 중심이 평년보다 동편되어 한반도는 이 trough의 서쪽에 위치하고 7 8월은 한반도와 그 주변이 ridge에 속한다. 따라서 한반도와 그 주변의 500hPa면 고도편차는 정편차를 나타내며 이때 동서지수는 높아서 평년에 비해 동서류가 강할 때 한발이 출현함을 밝혔다.
컴퓨터와 통신기술의 발달로 사용자에게 다양한 정보와 편리성이 제공된 반면, 컴퓨터 침입 및 범죄로 인한 피해가 날로 증가하고 있으며 다양한 침입 방법들이 새롭게 사용되고 있다. 따라서 침입자들의 행위를- 효과적으로 탐지하기 위해서는 기존의 오용탐지 방법과 더불어 비정상행위 모델의 적용에 대한 필요성이 증가하고 있다. 본 논문에서는 비 정상행위 탐지 모델에서 사용자의 정상행위 패턴 생성 시 최근에 관찰된 사용자의 행위에 더 많은 영향을 주도록 하는 새로운 연관 규칙 알고리즘을 제시한다 또한 생성된 정상행위 패턴을 토대로 사용자별 그리고 사용자간 클러스터링 과정을 수행함으로써 작업의 유사성을 가진 그룹의 명령어 또는 프로그램 이용정도를 파악한다. 이와 더불어 다양한 실험을 통해서 본 논문에서 제안된 비정상행위 판정시스템에서 탐지율을 최대화 할 수 있는 임계치 값들을 제시한다.
Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
Smart Structures and Systems
/
제33권2호
/
pp.93-103
/
2024
Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.
This paper aims to know the characteristics of occurrence of the anomaly level and variability of the monthly precipitation in Kyeongnam, Korea. For this study, it was investigated 주e distribution of the annual and cont비y mean precipitation, the precipitation variability and its annual change, and the characteristics of occurrence of the anomaly level in Kyeongnam area the results were summarized as follows : 1) she mean of annual total precipitation averaged over Kyeongnam area is 1433.3mm. I'he spatial distribution of the annual total precipitation shows that in Kyeongnam area, the high rainfall area locates in the southwest area and south coast and the low rainfall area in an inland area. 2) Monthly mean precipitation in llyeongnam area was the highest in July(266.4mm) 각lowed by August(238.0mm), June(210.2mm) in descending order. In summer season, rainfall was concentrated and accounted for 49.9 percent of the annual total precipitation. Because convergence of the warm and humid southwest current which was influenced by Changma and typhoon took place well in this area. 3) The patterns of annual change of precipitaion variability can be divided into two types; One is a coast type and the other an inland type. The variability of precipitation generally appears low in spring and summer season and high in autumn and winter season. This is in accord with the large and small of precipitation. 4) The high frequency of anomaly level was N( Normal)-level and the next was LN( Low Informal) -level and 25(Extremely Subnormal)-level was not appeared in all stations. The occurrence frequency of N level was high in high rainfall area and distinguish성 in spring and summer season but the low rainfall area was not. hey Words : anomaly level, variability, precipitation, coast type, inland type.
최근 인터넷 이용자들이 급격하게 증가하고 있으며, 초보수준의 일반 네트워크 사용자들도 인터넷상의 공개된 해킹 도구들을 사용하여 고도의 기술을 요하는 침입이 가능하여 해킹 문제가 더욱 심각해지고 있다. 해커들이 침입하기 위하여 취약점을 알아내려고 의도하는 다양한 형태의 침입시도를 사전에 탐지하여 침입이 일어나는 것을 미리 방어할 수 있는 침입시도탐지가 적극적인 예방 차원에서 더욱 필요하다. 기존의 포트 스캔이나 네트워크 취약점 공격에 대응하기 위한 네트워크 기반의 비정상 침입시도 탐지 알고리즘은 침입시도함지에 있어 몇 가지 한계점을 갖고 있다. 기존 알고리즘은 Slow Scan, Coordinated Scan을 할 경우 탐지할 수 없다는 것이다. 따라서 침입시도 유형에 제한을 받지 않고 침입시도에 관한 다양한 형태의 비정상 접속을 효과적으로 탐지할 수 있는 새로운 개념의 알고리즘이 요구된다. 본 논문에서는 세션 패턴과 탐지 오류율을 규칙기반으로 하는 침입시도 탐지알고리즘(Session patterns & FCM Anomaly Detector : SFAD)을 제안한다.
네트워크 환경에서의 다양한 침입은 심각한 위험을 초래 할 수 있기 때문에 침입을 효과적으로 탐지하기 위해 데이터마이닝 기법을 발전시켜 왔다. 비정상행위 탐지 기술은 순수 데이터로 학습한 후, 비정상행위를 탐지하기 때문에 정교한 정상행위 패턴 생성이 필수적이다. 순수한 학습 데이터의 생성은 시간과 비용이 많이 드는 단점이 있다. 따라서 네트워크 상의 데이터에 대한 특징을 파악하는 것이 중요하다. 본 논문에서는 데이터마이닝의 연관규칙 및 클러스터링기법을 비정상행위 탐지에 적용하였고, 패킷내의 판정 요소에 정보이론 척도를 적용하여 불필요한 데이터를 필터링하는 방법을 제시하였다. 또한 가변길이 트랜잭션을 네트워크상의 분석 단위를 정의하는 기준으로 제시하여 행위 패턴 생성에 보다 묘사성이 높음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.