• 제목/요약/키워드: anomaly patterns

검색결과 153건 처리시간 0.02초

비전형적인 형태의 제 1 새성기형 환자 2예 (Two Atypical Cases of First Branchial Cleft Anomalies)

  • 김수종;김태훈;방승환;우정수
    • 대한두경부종양학회지
    • /
    • 제33권1호
    • /
    • pp.31-34
    • /
    • 2017
  • First branchial cleft anomaly is a very rare disease and exhibits various clinical presentations. Therefore, the diagnosis of first branchial cleft anomaly may be difficult; the condition is often misdiagnosed and mismanaged. Accurate diagnosis is very important, because if not diagnosed correctly, patients with first branchial cleft anomaly would be treated with local incision and drainage repeatedly. We report two cases of first branchial cleft anomaly. The first patient visited for recurrent swell and discharge in the infra-auricular area with a history of previous incision and drainage. The other patient showed a cystic mass in the infra-auricular area and all of them were misdiagnosed initially by their treating specialists elsewhere. The objective of this study is to share our experiences of first branchial cleft anomaly, and emphasize its various clinical patterns and the significance of accurate diagnosis.

인터넷 환경에서의 비정상행위 공격 탐지를 위한 위협관리 시스템 (Threat Management System for Anomaly Intrusion Detection in Internet Environment)

  • 김효남
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권5호
    • /
    • pp.157-164
    • /
    • 2006
  • 최근에는 대부분의 인터넷 공격은 악성코드(Malware)에 의한 잘 알려지지 않은 제로데이 공격 형태가 주류를 이루고 있으며, 이미 알려진 공격유형들에 대해서 탐지하는 오용탐지 기술로는 이러한 공격에 대응하기가 어려운 실정이다. 또한, 다양한 공격 패턴들이 인터넷상에 나타나고 있기 때문에 기존의 정보 보호 기술로는 한계에 다다르게 되었고, 웹기반 서비스가 보편화됨에 따라 인터넷상에 노출된 웹 서비스가 주공격 대상이 되고 있다. 본 논문은 인터넷상의 트래픽 유형을 분류하고, 각 유형에 따른 이상 징후를 탐지하고 분석할 수 있는 비정상행위공격 탐지기술(Anomaly Intrusion Detection Technologies)을 포함하고 있는 위협관리 시스템(Threat Management System)을 제안한다.

  • PDF

패턴사전과 비정형성을 통한 이상치 탐지방법 적용 (Anomaly Detection via Pattern Dictionary Method and Atypicality in Application)

  • 오세홍;박종성;윤영삼
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.481-486
    • /
    • 2023
  • Anomaly detection holds paramount significance across diverse fields, encompassing fraud detection, risk mitigation, and sensor evaluation tests. Its pertinence extends notably to the military, particularly within the Warrior Platform, a comprehensive combat equipment system with wearable sensors. Hence, we propose a data-compression-based anomaly detection approach tailored to unlabeled time series and sequence data. This method entailed the construction of two distinctive features, typicality and atypicality, to discern anomalies effectively. The typicality of a test sequence was determined by evaluating the compression efficacy achieved through the pattern dictionary. This dictionary was established based on the frequency of all patterns identified in a training sequence generated for each sensor within Warrior Platform. The resulting typicality served as an anomaly score, facilitating the identification of anomalous data using a predetermined threshold. To improve the performance of the pattern dictionary method, we leveraged atypicality to discern sequences that could undergo compression independently without relying on the pattern dictionary. Consequently, our refined approach integrated both typicality and atypicality, augmenting the effectiveness of the pattern dictionary method. Our proposed method exhibited heightened capability in detecting a spectrum of unpredictable anomalies, fortifying the stability of wearable sensors prevalent in military equipment, including the Army TIGER 4.0 system.

이상탐지 알고리즘 성능 비교: 이상치 유형과 데이터 속성 관점에서 (Performance Comparison of Anomaly Detection Algorithms: in terms of Anomaly Type and Data Properties)

  • 김재웅;정승렬;김남규
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.229-247
    • /
    • 2023
  • 여러 분야에서 이상탐지의 중요성이 강조됨에 따라, 다양한 데이터 유형과 이상치 유형에 대한 이상탐지 알고리즘이 개발되고 있다. 하지만 이상탐지 알고리즘의 성능은 주로 공개 데이터 세트에 대해 측정될 뿐 특정 유형의 이상치에서 나타나는 각 알고리즘의 성능은 확인되지 않고 있으므로, 분석 상황에 맞는 적절한 이상탐지 알고리즘 선택에 어려움이 있다. 이에 본 논문에서는 이상치의 유형과 다양한 데이터 속성을 먼저 파악하여, 이를 기반으로 적절한 이상탐지 알고리즘 선택에 도움을 줄 수 있는 방안을 제시하고자 한다. 구체적으로 본 연구에서는 지역, 전역, 종속성, 그리고 군집화의 총 4가지 이상치 유형에 대해 이상탐지 알고리즘의 성능을 비교하고, 추가 분석을 통해 라벨 수준, 데이터 개수, 그리고 차원 수가 성능에 미치는 영향을 확인한다. 실험 결과 이상치 유형에 따라 가장 우수한 성능을 나타내는 알고리즘이 다르게 나타나며, 이상치 유형에 대한 정보가 없는 경우에도 안정적인 성능을 보여주는 알고리즘을 확인했다. 또한 비지도 학습 기반 이상탐지 알고리즘의 성능이 지도 학습 및 준지도 학습 알고리즘의 성능보다 낮게 나타나는 유형을 확인하였다. 마지막으로 데이터 개수가 상대적으로 적거나 많을 때 대부분 알고리즘들의 성능이 이상치 유형에 더 강하게 영향을 받으며, 상대적으로 고차원일 경우 지역, 전역 이상치에서는 우수한 성능을 보였지만 군집화 이상치 유형에서 낮은 성능을 나타냄을 확인하였다.

한국에 있어서 1994년 하계한발의 기후학적 연구 (Climatological Study of 1994's Summer Droughts in Korea)

  • 양진석
    • 한국지역지리학회지
    • /
    • 제2권2호
    • /
    • pp.93-102
    • /
    • 1996
  • 본 연구는 한국에 있어서 1994년 하계한발의 지역적 분포특성과 지상기압장 및 500hPa면의 종관적 특성을 평년과 비교분석한 연구이다. 평년강수량에 대한 1994년 강수량의 백분율을 기준한 6월의 한발은 여수 중심의 남부지방, 7월은 한국 전역, 8월은 소백산맥 이동의 남동안에 심한 한발을 초래하여 강수와 시간적 공간적 변동성을 반영하고 있다. 6 8월의 한반도와 그 주변의 지상기압장의 기압편차가 정편차, 전국적인 한발이 나타난 7월은 부편차역에 속하여 대조를 이룬다. 1994년 하계에 한반도를 통과한 온대저기압은 그 통과 빈도가 낮을 뿐만 아니라 한반도로부터 남편, 혹은 북편되어 통과하여서 온대저기합성 강수의 출현빈도가 낮음을 알 수 있다. 6월의 한발시 500hPa면의 trough의 중심이 평년보다 동편되어 한반도는 이 trough의 서쪽에 위치하고 7 8월은 한반도와 그 주변이 ridge에 속한다. 따라서 한반도와 그 주변의 500hPa면 고도편차는 정편차를 나타내며 이때 동서지수는 높아서 평년에 비해 동서류가 강할 때 한발이 출현함을 밝혔다.

  • PDF

사용자 명령어 분석을 통한 비정상 행위 판정에 관한 연구 (A Study on Anomaly Detection based on User's Command Analysis)

  • 윤정혁;오상현;이원석
    • 정보보호학회논문지
    • /
    • 제10권4호
    • /
    • pp.59-71
    • /
    • 2000
  • 컴퓨터와 통신기술의 발달로 사용자에게 다양한 정보와 편리성이 제공된 반면, 컴퓨터 침입 및 범죄로 인한 피해가 날로 증가하고 있으며 다양한 침입 방법들이 새롭게 사용되고 있다. 따라서 침입자들의 행위를- 효과적으로 탐지하기 위해서는 기존의 오용탐지 방법과 더불어 비정상행위 모델의 적용에 대한 필요성이 증가하고 있다. 본 논문에서는 비 정상행위 탐지 모델에서 사용자의 정상행위 패턴 생성 시 최근에 관찰된 사용자의 행위에 더 많은 영향을 주도록 하는 새로운 연관 규칙 알고리즘을 제시한다 또한 생성된 정상행위 패턴을 토대로 사용자별 그리고 사용자간 클러스터링 과정을 수행함으로써 작업의 유사성을 가진 그룹의 명령어 또는 프로그램 이용정도를 파악한다. 이와 더불어 다양한 실험을 통해서 본 논문에서 제안된 비정상행위 판정시스템에서 탐지율을 최대화 할 수 있는 임계치 값들을 제시한다.

Deep learning-based anomaly detection in acceleration data of long-span cable-stayed bridges

  • Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.93-103
    • /
    • 2024
  • Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.

경남지방의 월강수량의 변동율과 Anomaly Level의 출현특성 (The Characteristics of the Anomaly Level and Variability of the Monthly Precipitation in Kyeongnam, Korea)

  • 박종길;이부용
    • 한국환경과학회지
    • /
    • 제2권3호
    • /
    • pp.179-191
    • /
    • 1993
  • This paper aims to know the characteristics of occurrence of the anomaly level and variability of the monthly precipitation in Kyeongnam, Korea. For this study, it was investigated 주e distribution of the annual and cont비y mean precipitation, the precipitation variability and its annual change, and the characteristics of occurrence of the anomaly level in Kyeongnam area the results were summarized as follows : 1) she mean of annual total precipitation averaged over Kyeongnam area is 1433.3mm. I'he spatial distribution of the annual total precipitation shows that in Kyeongnam area, the high rainfall area locates in the southwest area and south coast and the low rainfall area in an inland area. 2) Monthly mean precipitation in llyeongnam area was the highest in July(266.4mm) 각lowed by August(238.0mm), June(210.2mm) in descending order. In summer season, rainfall was concentrated and accounted for 49.9 percent of the annual total precipitation. Because convergence of the warm and humid southwest current which was influenced by Changma and typhoon took place well in this area. 3) The patterns of annual change of precipitaion variability can be divided into two types; One is a coast type and the other an inland type. The variability of precipitation generally appears low in spring and summer season and high in autumn and winter season. This is in accord with the large and small of precipitation. 4) The high frequency of anomaly level was N( Normal)-level and the next was LN( Low Informal) -level and 25(Extremely Subnormal)-level was not appeared in all stations. The occurrence frequency of N level was high in high rainfall area and distinguish성 in spring and summer season but the low rainfall area was not. hey Words : anomaly level, variability, precipitation, coast type, inland type.

  • PDF

퍼지인식도와 세션패턴 기반의 비정상 탐지 메커니즘 (Anomaly Detection Mechanism based on the Session Patterns and Fuzzy Cognitive Maps)

  • 류대희;이세열;김혁진;송영덕
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.9-16
    • /
    • 2005
  • 최근 인터넷 이용자들이 급격하게 증가하고 있으며, 초보수준의 일반 네트워크 사용자들도 인터넷상의 공개된 해킹 도구들을 사용하여 고도의 기술을 요하는 침입이 가능하여 해킹 문제가 더욱 심각해지고 있다. 해커들이 침입하기 위하여 취약점을 알아내려고 의도하는 다양한 형태의 침입시도를 사전에 탐지하여 침입이 일어나는 것을 미리 방어할 수 있는 침입시도탐지가 적극적인 예방 차원에서 더욱 필요하다. 기존의 포트 스캔이나 네트워크 취약점 공격에 대응하기 위한 네트워크 기반의 비정상 침입시도 탐지 알고리즘은 침입시도함지에 있어 몇 가지 한계점을 갖고 있다. 기존 알고리즘은 Slow Scan, Coordinated Scan을 할 경우 탐지할 수 없다는 것이다. 따라서 침입시도 유형에 제한을 받지 않고 침입시도에 관한 다양한 형태의 비정상 접속을 효과적으로 탐지할 수 있는 새로운 개념의 알고리즘이 요구된다. 본 논문에서는 세션 패턴과 탐지 오류율을 규칙기반으로 하는 침입시도 탐지알고리즘(Session patterns & FCM Anomaly Detector : SFAD)을 제안한다.

  • PDF

데이터마이닝 기법을 이용한 비정상행위 탐지 방법 연구 (Anomaly Detection Scheme Using Data Mining Methods)

  • 박광진;유황빈
    • 정보보호학회논문지
    • /
    • 제13권2호
    • /
    • pp.99-106
    • /
    • 2003
  • 네트워크 환경에서의 다양한 침입은 심각한 위험을 초래 할 수 있기 때문에 침입을 효과적으로 탐지하기 위해 데이터마이닝 기법을 발전시켜 왔다. 비정상행위 탐지 기술은 순수 데이터로 학습한 후, 비정상행위를 탐지하기 때문에 정교한 정상행위 패턴 생성이 필수적이다. 순수한 학습 데이터의 생성은 시간과 비용이 많이 드는 단점이 있다. 따라서 네트워크 상의 데이터에 대한 특징을 파악하는 것이 중요하다. 본 논문에서는 데이터마이닝의 연관규칙 및 클러스터링기법을 비정상행위 탐지에 적용하였고, 패킷내의 판정 요소에 정보이론 척도를 적용하여 불필요한 데이터를 필터링하는 방법을 제시하였다. 또한 가변길이 트랜잭션을 네트워크상의 분석 단위를 정의하는 기준으로 제시하여 행위 패턴 생성에 보다 묘사성이 높음을 보였다.