• Title/Summary/Keyword: anodic current density

Search Result 234, Processing Time 0.023 seconds

Influence of Corrosion Potential and Current Density on Polarization Curve Variations using Polycarbonate[III]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu;Kim, Myung-Sun;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves using polycarbonate. The results were particularly examined to identify the influences affecting the corrosion potential including various conditions such as temperature, pH, catalytic enzyme, and salt. The lines representing the active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme, and salt. The tafel slope for the anodic dissolution was determined based on the polarization effect with various conditions. The slope of the polarization curves describing the active-to-passive transition region were noticeably shifted in direction. Also, from the variation in the conditions, the optimum conditions were established for the most rapid transformation, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(Ir/If). The value of Ir/If was then used in measuring the extent of the critical corrosion sensitivity of the polycarbonate. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF

A Study on the Properties of Anodic Oxide Films Formed on Al Alloys in Oxalic Acid (알루미늄 합금 소재의 옥살산 아노다이징 피막 물성 연구)

  • Jeong, Nagyeom;Park, Jihyun
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.5
    • /
    • pp.249-256
    • /
    • 2020
  • As the size of manufacturing equipment for LCD and OLED displays increases, replacement of existing heavy stainless steel components with light metals, such as aluminum alloys, is being more important in semiconducting and display manufacturing industries. To use aluminum alloys for components in semiconducting and display industries, it is important to develop a new anodization method for improved performance of anodic oxide films than conventional anodization method based on sulfuric acid. In this work, optimum applied current density and the best sealing methods for anodic oxide films in 3% oxalic acid were explored. Experimental results showed 2.5 A/dm2 is the best applied current density for improved hardness and dielectric breakdown voltage. Sealing of the anodic oxide films further improved their hardness, dielectric breakdown voltage and resistance to HCl, by which application of anodic oxide films become applicable for components in semiconducting and display industries.

Polarization Characteristics of Polymers: Poly(vinylchloride), Poly(ethyleneterephthalate), Poly(propylene), and Poly(carbonate) (고분자물질들의 분극 특성: Poly(vinylchloride), Poly(ethyleneterephthalate), Poly(propylene), Poly(carbonate))

  • Choi, Chil-Nam;Yang, Hyo-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.19-25
    • /
    • 2002
  • We measured the variations of potentials and current densities for several polymers. The results were carefully examined to identify various factors such as temperature and pH to influence the potential and rate. The Tafel slope for anodic dissolution was determined by the polarization effect under these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum current density were designated as the relative polarization sensitivity $(I_r/I_f)$. The mass-transfer coefficient value $({\alpha})$ was determined by the Tafel slope for anodic dissolution on the basis of the polarization effect under optimum conditions.

Comparison with Polarization Characteristic of Polymers

  • Choi, Chil-Nam;Yabg, Hyo-Kyung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.188-190
    • /
    • 2001
  • We carried out to measure the variations of potential with current density polymers. The results were particularly examined to identify the influences on corrosion potential and corrosion rate of various factors including temperature and pH. The Tafel slope for anodic dissolution was determined by the polarization effect depending on these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum passive current density were designated as the relative corrosion sensitivity($I_{r}I_{f}$). The mass transfer coefficient value (${\alpha}$) was determined with the Tafel slope for anodic dissolution based on the polarization effect with optimum conditions.

  • PDF

AN ELECTROCHEMICAL STUDY BY USING A POTENTIOSTAT ON THE CORROSION OF AMALGAMS IN SALIVA (Potentiostat를 이용한 타액에서의 아말감부식에 대한 전기화학적 연구)

  • Son, Yoon-Hee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.534-548
    • /
    • 1994
  • The purpose of this study is to observe the corrosion characteristics of seven dental amalgams (CAULK FINE CUT, CAULK SPHERICAL, OPTALLOY II, DISPERSALLOY, HI VERALOY, TYTIN, VALIANT) through the anodic polarization curve obtained by using a potentiostat. After each amalgam alloy and Hg being triturated, the triturated mass was inserted into the cylindrical metal mold, and condensed by hydrolic pressure(160 kg/$cm^2$). Each specimen was removed from the metal mold. 24 hours after condensation, specimens were polished with the emery paper and stored at room temperature for 1 week. The anodic polarization curves were employed to compare the corrosion behaviours of the amalgam in 0.9% saline solution, Fusayama's artificial saliva, and stimulated parotid saliva at $37^{\circ}C$ with 3-electrode potentiostat. After the immersion of specimen in electrolyte for 1 hour, the potential scan was begun. The potential scan range was. -1700m V ~ + 400m V(vs. S. C. E) in the working electrode and the scan rate was 50m V /sec. The results were as follows, 1. The corrosion potential, the potential of anodic current peak, and transpassive potential in the stimulated parotid saliva shifted to more anodic direction than those in saline solution, and the current density in the stimulated parotid saliva was lower than that in saline solution. Those in Fusayama's artificial saliva was similar to those in stimulated parotid saliva. 2. The anodic polarization profiles in Fusayama's artificial saliva and stimulated parotid saliva indicated a region of slow slope current density, which is extending from the corrosion potential to the potential of anodic current peak, but that in 0.9% saline solution indicated no region of slow slope. 3. The corrosion potentials for CAULK FINE CUT, CAULK SPHERICAL, and OPT ALLOY II had the similarity in 0.9% saline solution, Fusayama's artificial saliva and stimulated parotid saliva, but those for high coper amalgam and VALIANT had no similarity. 4. The current density for TYTIN amalgam in stimulated parotid saliva was the lowest among the others. 5. As for current density, there was no significant difference between palladium enriched VALINAT and other high copper amalgams.

  • PDF

Electrochemical Properties of Austenitic Stainless Steel with Initial Delay Time and Surface Roughness in Electropolishing Solution (전해연마 용액에서 안정화 시간과 표면 거칠기에 따른 오스테나이트 스테인리스강의 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.158-169
    • /
    • 2022
  • The objective of this study was to investigate the electrochemical behavior and damage degree of metal surface under different conditions by performing a potentiodynamic polarization experiment using an electropolishing solution for UNS S31603 based on initial delay time and surface roughness (parameters). A second anodic peak occurred at initial delay time of 0s and 100s. However, it was not discovered at 1000s and 3600s. This research referred to an increase in current density due to hydrogen oxidation reaction among various hypotheses for the second anodic peak. After the experiment, both critical current density and corrosion current density decreased when the initial delay time (immersion time) was longer. As a result of surface analysis, characteristics of the potentiodynamic polarization behavior were similar with roughness, although the degree of damage was clearly different. With an increase in surface roughness value, the degree of surface damage was precisely observed. As such, electrochemical properties were different according to the immersion time in the electropolishing solution. To select electropolishing conditions such as applied current density, voltage, and immersion time, 1000s for initial delay time on the potentiodynamic polarization behavior was the most appropriate in this experiment.

Anodic Oxidation Treatment Methods of Metals (금속의 양극산화처리 기술)

  • Moon, Sungmo
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

Affecting of Corrosion Potential and Current Density on Variation Polarization Curves with Polyvinylchloride (I)

  • Choi, Chil-Nam;Yang, Hyo-Kyung;Jung, Oh-Jin
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.91-98
    • /
    • 1998
  • In this study, we carried out the experiments for measuring the variations of corrosion potential and current density for polarization curves with polyvinylchloride. The results exhibited especially the influence affecting the corrosion potential and various conditions (temperature, day, pH, bacteria, and added salt). The second anodic current density peak and the minimum passive current density are designated $I_P/I_0,$ respectively. The value of $I_P/I_O$ is used as a measurement for the extent of degradation of the polyvinylchloride. The potentiodpnamics parameters of the corrosion were obtained using Tafel equation.

  • PDF

Study on Electrochemical Polishing for Stainless Steel using Micro Pulse Current (미세 펄스전원을 이용한 스테인레스강의 전기화학연마)

  • 이동활;박정우;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.127-130
    • /
    • 2003
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of a metal object. An electrolyte of phosphoric, sulfuric and distilled water has been used in this study. In the low current density region, there can be found plateau region and material removal process and leveling process occur successively. In this study, an electrochemical polishing process using pulse current is adopted as a new electrochemical polishing process. In electrochemical machining processes, it has been found that pulse electrochemical processes provide an attractive alternative to the electrochemical processes using continuous current. Hence, this study will discuss the electrochemical polishing processes in low current density region and pulse electrochemical polishing.

  • PDF

Study on Electrochemical Polishing for Stainless Steel 300 Series using Micro Pulse Current (미세 펄스전원을 이용한 스테인레스강 300 계열의 전기화학연마)

  • 이동활;박정우;문영훈
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.388-393
    • /
    • 2003
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of a metal object. An electrolyte of phosphoric acid 50% in vol., sulfuric acid 20% in vol. and distilled water 30% in vol. has been used in this study. In the low current density region, there can be found plateau region and material removal process and leveling process occur successively. In this study, an electrochemical polishing process using pulse current is adopted as a new electrochemical polishing process. In electrochemical machining processes, it has been found that pulse electrochemical processes provide an attractive alternative to the electrochemical processes using continuous current. Hence, this study will discuss the electrochemical polishing processes in low current density region and pulse electrochemical polishing.