DOI QR코드

DOI QR Code

Electrochemical Properties of Austenitic Stainless Steel with Initial Delay Time and Surface Roughness in Electropolishing Solution

전해연마 용액에서 안정화 시간과 표면 거칠기에 따른 오스테나이트 스테인리스강의 전기화학적 특성

  • Hwang, Hyun-Kyu (Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 황현규 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2022.04.25
  • Accepted : 2022.04.26
  • Published : 2022.05.06

Abstract

The objective of this study was to investigate the electrochemical behavior and damage degree of metal surface under different conditions by performing a potentiodynamic polarization experiment using an electropolishing solution for UNS S31603 based on initial delay time and surface roughness (parameters). A second anodic peak occurred at initial delay time of 0s and 100s. However, it was not discovered at 1000s and 3600s. This research referred to an increase in current density due to hydrogen oxidation reaction among various hypotheses for the second anodic peak. After the experiment, both critical current density and corrosion current density decreased when the initial delay time (immersion time) was longer. As a result of surface analysis, characteristics of the potentiodynamic polarization behavior were similar with roughness, although the degree of damage was clearly different. With an increase in surface roughness value, the degree of surface damage was precisely observed. As such, electrochemical properties were different according to the immersion time in the electropolishing solution. To select electropolishing conditions such as applied current density, voltage, and immersion time, 1000s for initial delay time on the potentiodynamic polarization behavior was the most appropriate in this experiment.

Keywords

Acknowledgement

이 논문은 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(선박 배출 대기오염물질 동시저감 후처리시스템 실증 및 인증체계 구축).

References

  1. S. H. Kim, S. H. Lee, J. H. Cho, S. B. kim, J. S. Choi, C. W. Park, Electropolishing Characteristics of Stainless Steel for Industrial Application, The Korean Institute of Surface Engineering, 49, 696 (2016). http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07002209
  2. F. Nazneen, P. Galvin, D. W. Arrigan, M. Thompson, P. Benvenuto and G. Herzog, Electropolishing of medicalgrade stainless steel in preparation for surface nano-texturing, Journal of Solid State Electrochemistry, 16, 1389 (2012). Doi: https://doi.org/10.1007/s10008-011-1539-9
  3. E. S. Lee, Machining characteristics of the electropolishing of stainless steel(STS316L), The International Journal of Advanced Manufacturing Technology, 16, 591 (2000). Doi: https://doi.org/10.1007/s001700070049
  4. J. Y. Jang, J. S, Song, and J. S. Nah, Effect of polishing solution temperature and times by electro-polishing in dental casting Co-Cr-Mo alloy, Korean Academy of Dental Technology, 34, 145 (2012). Doi: https://doi.org/10.14347/kadt.2012.34.2.145
  5. Yogesh B. Patil and S. R. Dulange, A REVIEW ON ELCTROPOLISHING PROCESS AND ITS AFFECTING PARAMETERS, International Journal of Advance Research In Science And Engineering, 3, 246 (2014). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1070.2573&rep=rep1&type=pdf
  6. F.A. Arash, Amir Mora, Elmira Mora and Navid Attarzadeh, Electrochemical Behaviour of AISI 410 Stainless Steel at Open Circuit Potential in Acidic Solutions, Analytical & Bioanalytical Electrochemistry, 6, 284 (2014). https://scholar.google.co.kr/scholar?hl=ko&as_sdt=0%2C5&q=Electrochemical+Behaviour+of+410+stainless+steel+at+open+circuit+potential+in+acidic+solutions&btnG=
  7. S. J. Lee and J. J. Lai, The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel, Journal of Materials Processing Technology, 140, 206 (2003). Doi: https://doi.org/10.1016/S0924-0136(03)00785-4
  8. Leban, M. B., Mikyska, C., Kosec, T. et al., The Effect of Surface Roughness on the Corrosion Properties of Type AISI 304 Stainless Steel in Diluted NaCl and Urban Rain Solution. Journal of Materials Engineering and Performance, 23, 1695 (2014). Doi: https://doi.org/10.1007/s11665-014-0940-9
  9. Lisbeth R. Hilbert, Dorthe Bagge-Ravn and John Kold, Lone Gram, Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance, International Biodeterioration & Biodegradation, 52, 175 (2003). Doi: https://doi.org/10.1016/S0964-8305(03)00104-5
  10. S. M. Lee, W. G. Lee, Y. H. Kim and H. Jang, Surface roughness and the corrosion resistance of 21Cr ferritic stainless steel, Corrosion Science, 63, 404 (2012). Doi: https://doi.org/10.1016/j.corsci.2012.06.031
  11. D. Gopi, D. Rajeswari, S. Ramya, M. Sekar, Pramod. R, Jishnu Dwivedi, L. Kavitha and R. Ramaseshan, Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel, Applied Surface Science, 286, 83 (2013). Doi: https://doi.org/10.1016/j.apsusc.2013.09.023
  12. G. T. Burstein and P. C. Pistorius, Surface Roughness and the Metastable Pitting of Stainless Steel in Chloride Solutions, CORROSION, 51, 380 (1995). Doi: https://doi.org/10.5006/1.3293603
  13. Herbert H. Uhlig and Glenn E. Woodside, Anodic Polarization of Passive and Non-passive Chromium-Iron Alloys, The Journal of PHYSICAL CHEMISTRY, 57, 280 (1953). Doi: https://doi.org/10.1021/j150504a005
  14. G.E.C. Bell, T. Inazumi, E.A. Kenik and T. Kondo, Electrochemical and microstructural characterization of an austenitic stainless steel irradiated by heavy ions at 515℃, Journal of Nuclear Materials, 187, 170 (1992). https://doi.org/10.1016/0022-3115(92)90549-Z
  15. N. Srinivasan, A. K. Revelly, V .Kain, I. Samajdar, C. R. Hutchinson and P. Sivaprasad, Anodic Polarization Behavior Of Cold Worked Austenitic Stainless Steel, Advanced Materials Research, 794, 632 (2013). Doi: https://doi.org/10.4028/www.scientific.net/AMR.794.632
  16. Cheng Man, Chaofang Dong, Zhongyu Cui, Kui Xiao, Qiang Yu and Xiaogang Li, A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1M NaOH, Applied Surface Science, 427, 763 (2018). Doi: https://doi.org/10.1016/j.apsusc.2017.08.151
  17. P. Radhakrishnamurty and P. Adaikkalam, pH-potential diagrams at elevated temperatures for the chromium/water system, Corrosion Science, 22, 753 (1982). Doi: https://doi.org/10.1016/0010-938X(82)90012-9
  18. Junbo Huang, Xinqiang Wu and En-Hou Han, Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments, Corrosion Science, 52, 3444 (2010). Doi: https://doi.org/10.1016/j.corsci.2010.06.016
  19. Iva Betova, Martin Bojinov, Timo Laitinen, Kari Makela, Pekka Pohjanne and Timo Saario, The transpassive dissolution mechanism of highly alloyed stainless steels: I. Experimental results and modelling procedure, Corrosion Science, 44, 2675 (2002). Doi: https://doi.org/10.1016/S0010-938X(02)00073-2
  20. Denny A Jones, Principles and prevention of corrosion, second edition, p. 87 (1995).
  21. M. B. ROCKEL, Interpretation of the Second Anodic Current Maximum on Polarization Curves of Sensitized Chromium Steels in 1N H2SO4, CORROSION, 27, 95 (1971). Doi: https://doi.org/10.5006/0010-9312-27.3.95
  22. W. D. France, Jr. and N. D. Greene, Interpretation of Passive Current Maxima During Polarization of Stainless Steels, CORROSION, 24, 403 (1968). Doi: https://doi.org/10.5006/0010-9312-24.12.403
  23. Kim, C. D. and B. E. Wilde, Proc. NACE Conf., Philadelphia, Pa. (1970).
  24. P. Sury and T. Geiger, Einfluss der Warmebehandlung auf den Verlauf der Stromdichte-Potential-Kurven bei einem 13%igen Chromstahlguss, Werkstoffe und korrosion, 20, 665 (1969). Doi: https://doi.org/10.1002/maco.19690200804
  25. K. H. Jung and S. J. Kim, Influence of Sensitization on Mechanical Properties of AISI 304 Stainless Steel under High-Temperature. Journal of Nanoscience and Nanotechnology, 19, 7598 (2019). Doi: https://doi.org/10.1166/jnn.2019.16270
  26. J. R. Kish, N. J. Stead and D. L. Singbeil, Corrosion Control of Type 316L Stainless Steel in Sulfamic Acid Cleaning Solutions, CORROSION, 65, 491 (2009). Doi: https://doi.org/10.5006/1.3319152
  27. J. H. SHIVELY, R. F. HEHEMANN and A. R. TROIANO, Hydrogen Permeability of a Stable Austenitic Stainless Steel Under Anodic Polarization, CORROSION, 23, 215 (1967). https://doi.org/10.5006/0010-9312-23.7.215
  28. P. Villechaise, L. Sabatier and J.C. Girard, On slip band features and crack initiation in fatigued 316L austenitic stainless steel: Part 1: Analysis by electron back-scattered diffraction and atomic force microscopy, Materials Science and Engineering: A, 323, 377 (2002). Doi: https://doi.org/10.1016/S0921-5093(01)01381-8
  29. Herbert H. Uhlig and Glenn E. Woodside, Anodic Polarization of Passive and Non-passive Chromium-Iron Alloys, The Journal of PHYSICAL CHEMISTRY, 57, 280 (1953). Doi: https://doi.org/10.1021/j150504a005
  30. H. K. Hwang and S. J. kim, Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test, Corrosion Science and Technology, 20, 266 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.266
  31. H. K. Hwang, D. H. Shin, H. H. Kim, J. H. Lee, Reliability Evaluation of ER Type Corrosion Sensor for Monitoring Corrosion of Piping System Under Accelerated Corrosion Environment, Corrosion Science and Technology, 20, 403 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.403
  32. G. T. Burstein and S. P. Vines, Repetitive Nucleation of Corrosion Pits on Stainless Steel and the Effects of Surface Roughness, Journal of The Electrochemical Society, 148, 504 (2001). Doi: https://doi.org/10.1149/1.1416503
  33. Arash Shahryari, Walid Kamal and Sasha Omanovic, The effect of surface roughness on the efficiency of the cyclic potentiodynamic passivation (CPP) method in the improvement of general and pitting corrosion resistance of 316LVM stainless steel, Materials Letters, 62, 3906 (2008). Doi: https://doi.org/10.1016/j.matlet.2008.05.032.
  34. D. H. Shin, S. J. Kim, Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC. Corrosion Science and Technology, 20, 435 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.435