• Title/Summary/Keyword: anodic alumina

Search Result 92, Processing Time 0.022 seconds

Pt Nanotubes by Template Wetting Process (Template Wetting Process에 의한 Pt 나노튜브 제작)

  • Hwang, J.H.;Yang, B.L.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.1
    • /
    • pp.23-26
    • /
    • 2009
  • Pt nanotubes with diameter of 200 nm were fabricated by simple and convenient method of Template-Wetting Process. Porous alumina membranes were prepared by 2 step anodic oxidation as the template. To improve wetting properties and lower surface energy, pt solution was mixed with polymer. Polymer was removed completely during annealing. Grain growth process of pt nanotubes during baking and furnace annealing was examined by FE-SEM and XRD.

The Effect of Catalysts merged with alumina on the Growing Characteristics of Carbon Nanotubes using AAO templates

  • Lee, In-Wha;Lee, Tae-Young;Yang, Ji-Hoon;Ha, Byoung-Ho;Yoo, Ji-Beom;Kim, Seong-Kyu;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.697-700
    • /
    • 2002
  • Porous anodic aluminum oxide(AAO) templates prepared by anodizing method were used for growing multiwalled carbon nanotubes(CNTs). AAO templates with the homogeneous pore diameter and length were obtained by two step anodizing technique. Using AAO templates, vertically well-ordered two-dimensional carbon nanotube arrays were fabricated. We investigated the field emission property of CNTs grown using different catalyst metals in vacuum chamber (<$10^{-7}$ Torr) on AAO Template. To explain the different emission property, the surface reaction between catalysts and alumina pores which inserted carbon species of $C_2H_2$ using High resolution transmission electron microscopy (HRTEM) was studied.

  • PDF

A study for the fabrication of Ag nano-wire arrays (Ag nano-wire arrays의 제작에 관한 연구)

  • Jung, Kyung-Han;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.161-163
    • /
    • 2002
  • Siver nanowires have been obtained by electrodepositon in the porous anodic alumina that plays a role as a template in the constant current mode using DC power supply. The diameter and the length of the silver nanowires are about 55 nm and 13 ${\mu}m$ corresponding to them of the template respectively. The aspect ratio of the silver nanowires is more or less 200. The rate of the filling of the alumina pores is approximately 10%.

  • PDF

Fabrication of Nanoporous Alumina Membrane by High- Field Anodization (고전계 전기산화에 의한 나노다공성 알루미나 멤브레인의 제조)

  • Kim, Min-Woo;Hyun, Sang-Cheol;Ha, Yoon-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.45-45
    • /
    • 2010
  • Nanoporous anodic alumina membranes (NAAM) with high aspect ratio, self-ordered pore array were fabricated by high-field 2-step anodization method. High voltages of 80, 100, 120 and 140 V as well as 40 V for comparison were applied to an aluminum anode with respect to a Pt cathode immersed both in 0.3M oxalic acid solution in order to investigate the self-ordering characteristics of the nanoporous structure. The pore structures, including interpore distance, pore size, pore density, and porosity as well as the ordering characteristic were analyzed using field-enhanced scanning electron microscopy (FE-SEM) and the corresponding Fourier-transformed images. The nanoporous structure could be produced for all the voltage conditions, but the well-ordered through-hole pore without a branched structure seemed to occur only at 40 and 140 V. It turned out that the growth rate under 140 V high-field anodization was about 40 times higher than under conventional 40 V mild anodization, which enabled the fast fabrication of self-ordered, high aspect ratio NAAMs.

  • PDF

Fabrication of Nanometer-sized Pattern on PMMA Plate Using AAO Membrane As a Template for Nano Imprint Lithography (AAO 나노기공을 나노 임프린트 리소그래피의 형틀로 이용한 PMMA 나노패턴 형성 기술)

  • Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.420-425
    • /
    • 2008
  • PMMA light guiding plate with nano-sized pattern was fabricated using anodized aluminum oxide membrane as a template for nano imprint lithography. Nano-sized pore arrays were prepared by the self-organization processes of the anodic oxidation using the aluminum plate with 99.999% purity. Since the aluminum plate has a rough surface, the aluminum plate with thickness of 1mm was anodized after the pre-treatments of chemical polishing, and electrochemical polishing. The surface morphology of the alumina obtained by the first anodization process was controlled by the concentration of electrochemical solution during the first anodization. The surface morphology of the alumina was also changed according to temperature of the solution during chemical polishing performed after first anodization. The pore widening process was employed for obtaining the one-channel with flat surface and height of the channel because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. It is shown from SPM results that the nano-sized pattern on PMMA light guiding plate fabricated by nano imprint lithography method was well transferred from that of anodized aluminum oxide template.

Development of process technique of the alumina membrane with nano-sized pore array (나노미터 크기의 미세구조물을 제작하기 위한 공정기술 개발)

  • Lee, J.H.;Lee, B.W.;Kim, C.K.;Lee, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1971-1973
    • /
    • 2005
  • We fabricated an alumina membrane with nano-sized pore array by anodic oxidation using the thin film aluminum deposited on silicon wafer. It is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. The nano-sized pores with diameter of $60{\sim}120nm$ was obtained by $40{\sim}80$ voltage. The pore widening process was employed for obtaining the flat surface because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of rough surface. Finally, the sample was immersed to the phosphoric acid with 0.1M concentration to etching the barrier layer. The sample will be applied to electronic sensors, field emission display, and template for nano- structure.

  • PDF

Fabrication of Ni Nanodot Structure Using Porous Alumina Mask (다공성 알루미나 마스크를 이용한 니켈 나노점 구조 제작)

  • Lim, Suhwan;Kim, Chul Sung;Kouh, Taejoon
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.126-129
    • /
    • 2013
  • We have fabricated an ordered Ni nanodot structure using an alumina mask prepared via 2-step anodization technique under phosphoric acid. We have formed a porous structure with average pore size of 279 nm on $2{\mu}m$ thick alumina film and the thermal deposition of thin Ni film though the mask led to the formation of ordered Ni nanodot structure with an average dot size of 293 nm, following the pore structure on the mask. We further investigated the magnetic properties of the nanodot structure by measuring the hysteresis curve at room temperature. When compared to the magnetic properties of a continuous Ni film, we observed the decrease in the squareness and the increase in coercivity along the magnetization easy axis, due to the isolated nanodot structure. Our study suggests that the ordered nanodot structure can be easiy fabricated with thin film deposition technique using anodized alumina mask as a mask.

Moisture Gettering by Porous Alumina Films on Textured Silicon Wafer (실리콘 표면에 증착된 다공성 알루미나의 수분 흡착 거동)

  • Lim, Hyo Ryoung;Eom, Nu Si A;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.401-406
    • /
    • 2015
  • Getter is a class of materials used in absorbing gases such as hydrogen and moisture in microelectronics or semiconductor devices to operate properly. In this study, we developed a new device structure consisting of porous anodized alumina films on textured silicon wafer, which have cost efficiency in materials and processing aspects. Anodic aluminum oxide (AAO) with controlled pore sizes can be applied to a high-efficiency moisture absorber due to the high surface area and OH- saturated surface property. The moisture sorption capacity was 2.02% (RH=35%), obtained by analyzing isothermal adsorption/desorption curve.