• 제목/요약/키워드: anode water

검색결과 285건 처리시간 0.02초

해양환경 변화가 알루미늄합금 희생양극의 효율에 미치는 영향에 관한 연구 (A Study on the Influence of Al Alloy Sacrificial Anode Efficiency due to Marine Environmental Variation)

  • 김도형
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.106-111
    • /
    • 2000
  • Recently it was reported that the life of Al Sacrifical anode is being used in port piers has been significantly shortened compared with the original design life (e.g. average life shortened from 20 years to 13-15 year) Those factors involving these problems mentioned above were seemed to be a quality of anode material and diverse environmental factors such as pH flow rate temperature Dissolved oxygen Chemical oxygen demand and resistivity etcm In this study flow rate and contamination degree(pH) of sea water affecting to sacrificial anode life hve been investigated in terms of electrochemical characteristics of Al alloy sacrificial anode It was known that the lifetime of Al alloy anode was shortened not only by increasing of self-corrosion quantity by varying flow rate of sea water but also by increasing corrosion current density due to the potential difference increment between Al anode and steel structure cathode by varying contamination degree of sea water. Especially when anode current density is from 1mA/cm2 to 3mA/cm2 and flow rate of sea water is under 2m/s anode current efficiency is 90% above However flow rate is over 2m/s anode current efficiency fell down sharply due to erosion corrosion as well as galvanic corrosion.

  • PDF

전해 양극수를 이용한 디스플레이 신 세정 공정 (A new cleaning concept for display process with electrolyzed anode water)

  • 최민기;차지영;김영근;류근걸
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 추계학술대회
    • /
    • pp.99-102
    • /
    • 2004
  • Display process has adopted RCA clean, being applied to large area and coped with environmental issue for last ten years. However, the approaching concept of ozonized, hydrogenised, or electrolyzed water cleaning technologies is within RCA clean paradigm. In this work, only electrolyzed anode water was applied to clean particles and organics as well as metals based on Pourbaix concept, and as a test vehicle, MgO particles were introduced to prove the new concept. The electrolyzed anode water is very oxidative with high oxidation reduction potential(ORP) and low in pH of more than 900mV and 3.1, respectively. MgO particles were immerged in the anode water and its weight losses due to dissolution were measured with time. Weight losses were in the ranges of 100 to 500 micrograms in 250m1 anode waters depending on their ORP and pH. Therefore it was concluded that the cleaning radicals in the anode water was at least in the range of 1 to 5E20 ea per 250 ml anode water equivalent to IE18 ea/cm3. Hence it can be assumed that the anode water be applied to display cleaning since 1E10 to IE15 ea/cm3 ranges of contaminants are being treated. In addition, it was observed that anode water does not develop micro-roughness on hydrophobic surface while it does on the native silicon oxide.

  • PDF

연료전지 자동차 내 수소 공급 시스템에서 드레인 밸브 특성에 따른 드레인 로직 최적화 및 연비와 운전안정성을 고려한 물 관리 전략 개발 (Optimization of Condensate Water Drain Logic Depending on the Characteristics of Drain Valve in FPS of Fuel Cell Vehicle and Development of Anode Water Management Strategy to Achieve High Fuel Efficiency and Operational Stability)

  • 안득균;이현재;심효섭;김대종
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.155-162
    • /
    • 2016
  • A proton exchange membrane fuel cell (PEMFC) produces only water at cathode by an electrochemical reaction between hydrogen and oxygen. The generated water is transported across the membrane from the cathode to the anode. The transported water collected in water-trap and drained to the cathode within the humidifier outlet. If the condensate water is not being drained at the appropriate time, condensate water in the anode can cause the performance degradation or fuel efficiency degradation of fuel cell by the anode flooding or unnecessary hydrogen discharge. In this study, we proposed an optimization method of condensate water drain logic for the water drain performance and the water drain algorithm as considered the condensate water generating speed prep emergency case. In conclusion, we developed the water management strategy of fuel processing system (FPS) as securing fuel efficiency and operating stability.

전해 양극수를 이용한 새로운 디스플레이 세정 (A New Cleaning Concept for Display Manufacturing Process with Electrolyzed Anode Water)

  • 류근걸
    • 한국산학기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.78-82
    • /
    • 2005
  • 디스플레이 세정의 개념은 기존의 반도체 세정인 RCA 세정을 근간으로 하고 있으며, 대면적화와 환경친화적인 관점으로 발전하여 왔다. 본 연구에서는 프베이 도표에 근거하여 전리수를 이용하여 입자를 제거할 수 있음을 예측하고 이를 확인하였다. 이 때 연구 대상으로 MgO 분말을 사용하였다. 사용된 전리수는 산화전위가 800 mV 이상이고 pH가 3.1으로 산화상이 강하였다 전리수에 용해되는 MgO 분말의 무게를 pH에 조사하였으며, 250 ml 전리수에 100-500 microgram 범위로 용해됨을 알 수 있었다. 이는 $1E18 ea/cm^3$정도의 용해 물질을 내포하고 있음을 의미하며, 따라서 $1E15 ea/cm^3$ 정도 수준의 불순물을 다루는 디스플레이 세정에 적용할 수 있음을 알 수 있었다. 특기할 것은 전리수는 반도체의 기판인 실리콘 웨이퍼의 자연산화막을 식각하여 표면거칠기를 증가시킴을 처음으로 관찰하였다.

  • PDF

전기방식시 적용되는 희생양극의 성능개발에 대한 연구 (A Study on the Sacrificial Anode for Imparting High Capabilities to Cathodic Protection)

  • 김성종
    • 수산해양기술연구
    • /
    • 제34권1호
    • /
    • pp.37-42
    • /
    • 1998
  • Al alloy anode is mostly used for protecting marine structures such as pier steel piles and ship's body. Recently it has been reported that the life of Al alloy anode has been shortened significantly than the original design life. It is suggested that the suspected reasons for this problem mentioned above seems to be the improper protection design of alloy of anode on sea water regardless of environmental facotrs such as flow rate, temperature, contamination degree etc. However there is few paper about to the sea water contamination degree affecting to the life of Al alloy anode. In this study, the property of Al alloy anode was investigated as a parameter of sea water contamination degree such as variation of pH 2, 4, 6, 8, 10 and each sea port's contaminated waters.

  • PDF

전해수를 이용한 실리콘 웨이퍼 표면의 금속오염 제거 (A Study on the removal of Metallic Impurities on Si-wafer using Electrolyzed Water)

  • 윤효섭;류근걸
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.1-5
    • /
    • 2000
  • As the semiconductor devices are miniaturized, the number of the unit cleaning processes increases. In order to processes by conventional RCA cleaning process, the consumption of volume of liquid chemical and DI water became huge. Therefore, the problem of environmental issues are evolved by the increased consumption of chemicals. To resolve this matter, an advanced cleaning process by Electrolyzed Water was studied in this work. The electrolyzed water was made by an electrolysis equipment which was composed of three chambers of anode, cathode, and middle chambers. In the case of electrolyzed water with electrolytes in the middle chamber, oxidatively acidic water of anode and reductively alkaline water of cathode were obtained. The oxidation/reduction potentials and pH of anode water and cathode water were measured to be +l000mV and 4.8, and -530mV and 6.3, respectively. The Si-wafers contaminated with metallic impurities were cleaning with the electrolyzed water. To analysis the amounts of metallic impurities on Si-water surfaces, ICP-MS(Inductively Coupled Plasma-Mass spectrometer) was introduced. From results of ICP-MS measurements, it was concluded that the ability of electrolyzed water was equivalent to that of the conventional RCA cleaning.

  • PDF

IrO2 기반 수처리용 산화 전극의 표면 이종 접합 구성에 따른 활성 염소종 발생 증진 특성 연구 (A study on reactive chlorine species generation enhanced by heterojunction structures on surface of IrO2-based anodes for water treatment)

  • 홍석화;조강우
    • 상하수도학회지
    • /
    • 제32권4호
    • /
    • pp.349-355
    • /
    • 2018
  • This study interrogated multi-layer heterojunction anodes were interrogated for potential applications to water treatment. The multi-layer anodes with outer layers of $SnO_2/Bi_2O_3$ and/or $TiO_2/Bi_2O_3$ onto $IrO_2/Ta_2O_5$ electrodes were prepared by thermal decomposition and characterized in terms of reactive chlorine species (RCS) generation in 50 mM NaCl solutions. The $IrO_2/Ta_2O_5$ layer on Ti substrate (Anode 1) primarily served as an electron shuttle. The current efficiency (CE) and energy efficiency (EE) for RCS generation were significantly enhanced by the further coating of $SnO_2/Bi_2O_3$ (Anode 2) and $TiO_2/Bi_2O_3$ (Anode 3) layers onto the Anode 1, despite moderate losses in electrical conductivity and active surface area. The CE of the Anode 3 was found to show the highest RCS generation rate, whereas the multi-junction architecture (Anode 4, sequential coating of $IrO_2/Ta_2O_5$, $SnO_2/Bi_2O_3$, and $TiO_2/Bi_2O_3$) showed marginal improvement. The microscopic observations indicated that the outer $TiO_2/Bi_2O_3$ could form a crack-free layer by an incorporation of anatase $TiO_2$ particles, potentially increasing the service life of the anode. The results of this study are expected to broaden the usage of dimensionally stable anodes in water treatment with an enhanced RCS generation and lifetime.

철근콘크리트용 ICCP 양극의 종류별 음극방식 특성 (Characteristics of Cathodic Protection with ICCP Anode in Reinforced Concrete)

  • 정진아
    • Corrosion Science and Technology
    • /
    • 제11권4호
    • /
    • pp.112-119
    • /
    • 2012
  • This paper presents the results of a study of the effectiveness of cathodic protection with insoluble ICCP anode in reinforced concrete structures. Experimental tests were carried out on reinforced concrete specimens with 3 different commercial anodes for ICCP system in order to compare the effectiveness of cathodic protection. Results have shown that the kinds of anode for ICCP is irrelevant to the effectiveness of cathodic protection, In case of ICCP, the performance of cathodic protection has no relationship to the kinds of anode especially in concrete specimens with sea water condition. It has been found slightly more effective at Ti-Rod anode in fresh water condition and Ti-Mesh anode in atmospheric condition.

Critical Design Issues on the Cathodic Protection Systems of Ships

  • Lee, Ho Il;Lee, Chul Hwan;Jung, Mong Kyu;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.90-95
    • /
    • 2007
  • Cathodic protection technology has been widely used on ship's outer hull and inner side of ballast water tanks as a supplementary corrosion protection measure in combination with protective organic coatings. Impressed current cathodic protection system is typically opted for the ship's hull and, sacrificial anode system, for ballast water tanks. The anticipation and interest in cathodic protection system for ships has been surprisingly low-eyed to date in comparison with protective coatings. Computational analysis for the verification of cathodic protection design has been tried sometimes for offshore marine structures, however, in commercial shipbuilding section, decades old design practice is still applied, and no systematic or analytical verification work has been done for that. In this respect, over-rotection from un-erified initial design protocol has been also concerned by several experts. Especially, it was frequently reported in sacrificial anode system that even after full design life time, anode was remaining nearly intact. Another issue for impressed current system, for example, is that the anode shield area design for ship's outer hull should be compromised with actual application situation, because the state-of-the-art design equation is quite impractical from the applicator's stand. Besides that, in this study, some other critical design issues for sacrificial anode and impressed current cathodic protection system were discussed.

Mg 합금유전양긍에 의한 온수보일러의 음극방식거동에 관한 연구 (Study on the Cathodic Protectioin Behavior of Hot Water Boiler by Mg-Alloy Galvanic Anode)

  • 정기철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.115-121
    • /
    • 2000
  • As the development of industry water quality of river is going to bad because of waste water of an industrial complex and general home agricultural chemicals exhaust of $SO_3$ and CO gas acid rain and so on. Corrosion damage of boiler factory equipment and so forth occur quickly due to using of the polluted water resulting in increasing leak accident. Especially working life of hot water boiler using the polluted water becomes more short and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection method is suitable for than application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of how water boiler. In tap water and 0.001mol/$\ell$ NaCl solution the characteristics of anodic polarization of Mg-base alloys galvanic anode and tube material is investigated the measurement of cathodic protection potential according to the time elaspsed is carried out.

  • PDF