• 제목/요약/키워드: anode stability

검색결과 219건 처리시간 0.027초

Anode-supported Type SOFCs based on Novel Low Temperature Ceramic Coating Process

  • Choi, Jong-Jin;Ahn, Cheol-Woo;Kim, Jong-Woo;Ryu, Jungho;Hahn, Byung-Dong;Yoon, Woon-Ha;Park, Dong-Soo
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.338-343
    • /
    • 2015
  • To prevent an interfacial reaction between the anode and the electrolyte layer during the conventional high-temperature co-firing process, an anode-supported type cell with a thin-film electrolyte was fabricated by low-temperature ceramic thick film coating process. Ni-GDC cermet composite was used as the anode material and YSZ was used as the electrolyte material. Open circuit voltage and maximum power density were found to strongly depend on the surface uniformity of the anode functional layer. By optimizing the microstructure of the anode functional layer, the open circuit voltage and maximum powder density of the cell increased to 1.11 V and $1.35W/cm^2$, respectively, at $750^{\circ}C$. When a GDC barrier layer was applied between the YSZ electrolyte and the LSCF cathode, the cell showed good stability, with almost no degradation up to 100 h. Anode-supported type SOFCs with high performance and good stability were fabricated using a coating process.

The Effect of the Anode Thickness on Electrolyte Supported SOFCs

  • So Yeon Shin;Dae-Kwang Lim;Taehee Lee;Sang-Yun Jeon
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.145-151
    • /
    • 2023
  • Planer-type electrolyte substrates are often utilized for stack manufacturing of electrolyte-supported solid oxide fuel cells (ES-SOFCs) to fulfill necessary requirements such as a high mechanical strength and redox stability. This work did an electrochemical analysis of ES-SOFC with different NiO-YSZ anode thicknesses to find the optimal value for the high performance of the fuel cell. The cell resistivities were constant at anode thickness between 25-58 ㎛, but a thick anode (74 ㎛) caused a high electrode resistivity leading to a dramatic reduction in cell performance. A stability test was performed for 50 hours at 700℃, and the results showed a degradation rate of 0.3% per 1000 h by extrapolated fitting.

Electrochemical treatment of cefalexin with Sb-doped SnO2 anode: Anode characterization and parameter effects

  • Ayse, Kurt;Hande, Helvacıoglu;Taner, Yonar
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.513-525
    • /
    • 2022
  • In this study, it was aimed to evaluate direct oxidation of aqueous solution containing cefalexin antibiotic with new generation Sn/Sb/Ni: 500/8/1 anode. The fact that there is no such a study on treatment of cefalexin with these new anode made this study unique. According to the operating parameters evaluation COD graphs showed clearer results compared to TOC and CLX and thus, it was it was chosen as major parameter. Furthermore, pseudo-first degree kd values were calculated from CLX results to show more accurate and specific results. Experimental results showed that after 60 min of electrochemical oxidation, complete removal of COD and TOC was accomplished with 750 mg L-1 KCl, at pH 7, 50 mA cm-2 current density and 1 cm anode-cathode distance. Also, the stability of the Sn/Sb/Ni anode was evaluated by taking SEM and AFM images and XRD analysis before and after of electrochemical oxidation processes. According to the results, it was not occurred too much change on the anode surface even after 300 h of electrolysis. Thus, it was thought that the anode material was not corroded to a large extent. Furthermore, the removal efficiencies were very high for almost all the time and conditions. According to the results of the study, electrochemical oxidation with new generation Sn/Sb/Ni anodes for the removal of cefalexin antibiotic was found very successful and applicable due to require less reaction time complete mineralization and doesn't require pH adjustment step compared to other studies in literature. In future studies, different antibiotic types should be studied with this anode and maybe with real wastewaters to test applicability of the process in treatment of pharmaceutical wastewaters containing antibiotics, in a better way.

연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성 (Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell)

  • 송락현;송근숙
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구 -Cu-base 전극에 대하여- (A study on the developmenet of Anode Material for Molten Carbonate Fuel Celt - Cu-base electrode-)

  • 박재우;김용덕;황응림;김선진;강성군
    • 한국표면공학회지
    • /
    • 제28권4호
    • /
    • pp.243-254
    • /
    • 1995
  • The fabrication process of Cu-base anode for replacing Ni-base anode of molten carbonate fuel cell was investigated. Electrochemical performance and thermal stability of Cu-base anode were also investigated. Green sheet was prepared by mixing Cu and Ni powder with 1.5wt% methylcellulose and 100wt% water. The pore-size distribution of the Cu-base anode sintered at $800^{\circ}C$ for 30min showed almost uniform pore-size ranging from 4 to 20$\mu\textrm{m}$ and it was considered suitable for MCFC anode. Cu-Ni anode containing between 35 to 50wt% Ni exhibited current density of 111mA/$\textrm{cm}^2$ at 100mV overpotential and it was almost the some value for pure Ni anode. The sintering resistance of Cu-Ni increased with an increase of Ni addition. It was considered that the increase of sintering resistance was due to the decrease of diffusion rate of Cu and Ni with increasing the addition of Ni in Cu-Ni alloy.

  • PDF

Effect of Sheath Structure on Operating Stability in an Anode Layer Thruster

  • Yasui, Shinsuke;Yamamoto, Naoji;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.245-250
    • /
    • 2004
  • The discharge current oscillation has been measured for various hollow anode widths and its axial positions using a 1㎾-class anode layer hall thruster. As a result, there were thresholds of magnetic flux density for stable discharge. The plasma structure inside the hollow anode was numerically analyzed using the fully kinetic 2D3V Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods. The results reproduced both stable and unstable operation modes. In the stable operation case, which corresponds to the case with low magnetic flux, the plasma penetrated into the hollow anode deeper than the case with higher magnetic flux density case. This suggests that comparably large substantial anode area should contribute to stable operation.

  • PDF

연료전지 자동차 내 수소 공급 시스템에서 드레인 밸브 특성에 따른 드레인 로직 최적화 및 연비와 운전안정성을 고려한 물 관리 전략 개발 (Optimization of Condensate Water Drain Logic Depending on the Characteristics of Drain Valve in FPS of Fuel Cell Vehicle and Development of Anode Water Management Strategy to Achieve High Fuel Efficiency and Operational Stability)

  • 안득균;이현재;심효섭;김대종
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.155-162
    • /
    • 2016
  • A proton exchange membrane fuel cell (PEMFC) produces only water at cathode by an electrochemical reaction between hydrogen and oxygen. The generated water is transported across the membrane from the cathode to the anode. The transported water collected in water-trap and drained to the cathode within the humidifier outlet. If the condensate water is not being drained at the appropriate time, condensate water in the anode can cause the performance degradation or fuel efficiency degradation of fuel cell by the anode flooding or unnecessary hydrogen discharge. In this study, we proposed an optimization method of condensate water drain logic for the water drain performance and the water drain algorithm as considered the condensate water generating speed prep emergency case. In conclusion, we developed the water management strategy of fuel processing system (FPS) as securing fuel efficiency and operating stability.

효소연료전지의 Anode 제조조건이 성능에 미치는 영향 (Effect of Fabrication Method of Anode on Performance in Enzyme Fuel Cells)

  • 이세훈;황병찬;이혜리;김영숙;추천호;나일채;박권필
    • Korean Chemical Engineering Research
    • /
    • 제53권6호
    • /
    • pp.667-671
    • /
    • 2015
  • Anode는 효소를 이용한 효소전극과 cathode는 PEMFC용 전극을 이용해 효소연료전지를 구동하였다. 효소 anode는 graphite 분말과 효소로서 글루코스 산화제, 전자매개체로 ferrocene을 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. Anode 제조조건을 변화시키며 성능을 측정해 효소 anode 제조 최적조건을 찾았다. 효소 anode 압축 시 최적 압력은 8.89 MPa이고, 효소 anode의 graphite 성분비가 60%일 때 최고의 출력밀도를 나타냈다. Anode 기질 용액의 최적 glucose 농도는 1.7mol/l이었다. 효소 anode는 Nafion 용액에 1초, 2회 침지에 의해 안정화되었다.

용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구-Ni-Co양극에 관하여- (A Study on the Development of Anode Material for Molten Carbonate Fuel Cell -Ni-Co anode-)

  • 황상문;김선진;강성군
    • 한국표면공학회지
    • /
    • 제27권3호
    • /
    • pp.166-175
    • /
    • 1994
  • The effect of Co addition on the electrochemical performance and structural stability of porous Ni anode for molten carbonate fuel cell(MCFC) was evaluated by the anodic polarization and the sintering test in the simulated MCFC anode condition ($650^{\circ}C$, 80% $H_2$+20%$CO_2$). The anode current density ranged from 110mA/$cm^2$ to 144mA/$cm^2$ was obtained at +100mV overpotential by additions of Co up to 10 wt.%. The sintering resistance of Ni-Co anodes was higher than that of the pure Ni anode. The increase of sintering resistance seemed to be to the lower diffusion coefficient of Co than that of Ni.

  • PDF

Fuel-Flexible Anode Architecture for Solid Oxide Fuel Cells

  • Hwan Kim;Sunghyun Uhm
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.226-240
    • /
    • 2023
  • This paper provides an overview of the trends and future directions in the development of anode materials for solid oxide fuel cells (SOFCs) using hydrocarbons as fuel, with the aim of enabling a decentralized energy supply. Hydrocarbons (such as natural gas and biogas) offer promising alternatives to traditional energy sources, as their use in SOFCs can help meet the growing demands for energy. We cover several types of materials, including perovskite structures, high-entropy alloys, proton-conducting ceramic materials, anode on-cell catalyst reforming layers, and anode functional layers. In addition, we review the performance and long-term stability of cells based on these anode materials and assess their potential for commercial manufacturing processes. Finally, we present a model for enhancing the applicability of fuel cell-based power generation systems to assist in the realization of the H2 economy as the best practice for enabling distributed energy. Overall, this study highlights the potential of SOFCs to make significant progress toward a sustainable and efficient energy future.