DOI QR코드

DOI QR Code

Effect of Fabrication Method of Anode on Performance in Enzyme Fuel Cells

효소연료전지의 Anode 제조조건이 성능에 미치는 영향

  • Received : 2015.01.31
  • Accepted : 2015.03.03
  • Published : 2015.12.01

Abstract

Enzyme fuel cells were operated with cells composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase(Gox) as a enzyme and ferrocene as a redox mediator, and then coated with Nafion ionomer solution. Performances of enzyme unit cell were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 8.89MPa for enzyme anode pressing process. Highest power density was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7 mol/l in anode substrate solution. The enzyme anode was stabilized by two times of deeping in Nafion solution for 1 sec.

Anode는 효소를 이용한 효소전극과 cathode는 PEMFC용 전극을 이용해 효소연료전지를 구동하였다. 효소 anode는 graphite 분말과 효소로서 글루코스 산화제, 전자매개체로 ferrocene을 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. Anode 제조조건을 변화시키며 성능을 측정해 효소 anode 제조 최적조건을 찾았다. 효소 anode 압축 시 최적 압력은 8.89 MPa이고, 효소 anode의 graphite 성분비가 60%일 때 최고의 출력밀도를 나타냈다. Anode 기질 용액의 최적 glucose 농도는 1.7mol/l이었다. 효소 anode는 Nafion 용액에 1초, 2회 침지에 의해 안정화되었다.

Keywords

References

  1. Heller, A., "Miniature Biofuel Cells," Physical Chemistry Chemical Physics, 6, 209-216(2004). https://doi.org/10.1039/b313149a
  2. Mano, N., Mao, F. and Heller, A., "Characteristics of a Miniature Compartment-less Glucose-$O_2$ Biofuel Cell and Its Operation in a Living Plant," Journal of the American Chemical Society, 125, 6588-6594(2003). https://doi.org/10.1021/ja0346328
  3. Mano, N., Mao, F. and Heller, A., "A Miniature Biofuel Cell Operating in A Physiological Buffer," Journal of the American Chemical Society, 124, 12962-12963(2002). https://doi.org/10.1021/ja028514g
  4. Mano, N., Mao, F., Shin, W., Chen, T. and Heller, A., "A Miniature Biofuel Cell Operating at 0.78V," Chemical Communications, 518- 519(2003).
  5. Leech, D., Kavanagh, P. and Schuhmann, W., "Enzymatic Fuel Cells: Recent Progress," Electrochimica Acta, 84, 223-234(2012). https://doi.org/10.1016/j.electacta.2012.02.087
  6. Yuhashi, N., Tomiyama, M., Okuda, J., Igarashi, S., Ikebukuro, K. and Sode, K., "Glucose of a Novel Glucose Enzyme Fuel Cell System Employing Protein Engineered PQQ Glucose Dehydrogenase," Biosensors and Bioelectronics, 20, 2145-2150(2005). https://doi.org/10.1016/j.bios.2004.08.017
  7. Jenkins, P., Tuurla, S., Vaari, A., Valkiainen, M., Smolander, M. and Leech, D., "A Mediated Glucose/oxygen Enzymatic Fuel Cell Based on Printed Carbon Inks Containing Aldose Dehydrogenase and Laccase as Anode and Cathode," Enzyme and Microbial Technology, 50, 181-187(2012). https://doi.org/10.1016/j.enzmictec.2011.12.002
  8. Tsujimura, S., Kano, K. and Ikeda, T., "Glucose/$O_2$ Biofuel Cell Operating at Physiological Conditions," Electrochemistry, 70, 940 (2002).
  9. Sato, F., Togo, M., Islam, M. K., Matsue, T., Kosuge, J., Fukasaku, N., Kurosawa, S. and Nishizawa, M., "Enzyme-based Glucose Fuel Cell Using Vitamin K3-immobilized Polymer as an Electron Mediator," Electochemistry Communication, 7, 643-647(2005). https://doi.org/10.1016/j.elecom.2005.04.015
  10. Kim, H., Lee, I., Kwon, Y., Kim, B., Ha, S., Lee, J.-H., Kim, J., "Immobilization of Glucose Oxidase Into Polyaniline Nanofiber Matrix for Biofuel Cell Applications," Biosensors and Bioelectronics, 26, 3908-3913(2011). https://doi.org/10.1016/j.bios.2011.03.008
  11. Cosnier, S., Shan, D., Ding, S. N., "An Easy Compartment-less Biofuel Cell Construction Based on the Physical co-inclusion of Enzyme and Mediator Redox Within Pressed Graphite Discs," Electrochemistry Communications, 12, 266-269(2010). https://doi.org/10.1016/j.elecom.2009.12.011
  12. Zebda, A., Gondran, C., Cinquin, P. and Consier, S., "Glucose Biofuel Cell Construction Based on Enzyme, Graphite Particle and Redox Mediator Compression," Sensors and Actuators B, 173, 760-764(2012). https://doi.org/10.1016/j.snb.2012.07.089
  13. Song, J., Woo, M., Kim, K., Kim, S., Ahn, B., Lim, T. and Park, K. P., "Decrease of PEMFC Performance by Ion Contamination," Korean Chem. Eng. Res., 50, 187-190(2012). https://doi.org/10.9713/kcer.2012.50.2.187
  14. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  15. Kim, Y. S., Lee, S. H., Chu, C. H., Na, I. C., Lee, H. and Park, K. P., "Effect of Fabrication Method of Anode on OCV in Enzyme Fuel Cells," Korean Chem. Eng. Res. in Print.

Cited by

  1. 벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.258