• Title/Summary/Keyword: anode shield

Search Result 6, Processing Time 0.026 seconds

Critical Design Issues on the Cathodic Protection Systems of Ships

  • Lee, Ho Il;Lee, Chul Hwan;Jung, Mong Kyu;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.90-95
    • /
    • 2007
  • Cathodic protection technology has been widely used on ship's outer hull and inner side of ballast water tanks as a supplementary corrosion protection measure in combination with protective organic coatings. Impressed current cathodic protection system is typically opted for the ship's hull and, sacrificial anode system, for ballast water tanks. The anticipation and interest in cathodic protection system for ships has been surprisingly low-eyed to date in comparison with protective coatings. Computational analysis for the verification of cathodic protection design has been tried sometimes for offshore marine structures, however, in commercial shipbuilding section, decades old design practice is still applied, and no systematic or analytical verification work has been done for that. In this respect, over-rotection from un-erified initial design protocol has been also concerned by several experts. Especially, it was frequently reported in sacrificial anode system that even after full design life time, anode was remaining nearly intact. Another issue for impressed current system, for example, is that the anode shield area design for ship's outer hull should be compromised with actual application situation, because the state-of-the-art design equation is quite impractical from the applicator's stand. Besides that, in this study, some other critical design issues for sacrificial anode and impressed current cathodic protection system were discussed.

A Study on Uniformity of Current Distribution in Hull Cell (Hull Cell에서 전류분포의 균일화에 관한 연구)

  • 여운관
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.6
    • /
    • pp.340-346
    • /
    • 1994
  • The method of uniforming current distribution in Hull cell are studied by using auxiliary anode, current shield bipolar electrode, and combinings bipolar electrode with current shield in order to find a way of uni-form deposition. The current density distributions are measured by each ammeter of the same inner resistance connected to divided cathode pannel respectively. The current density distributions of cathode electrode divided into five sections with 5mm width have a tendency of linear inclination, and that of twenty sections have a tendency of smoother curve than the curve of original Hull cell pannel. Their results showed lower value on the high current density portion and higher value on the low portion than that original Hull cell pannel. The current distribution in Hull cell is able to unify by using auxiliary anode, or combining bipo-lar electrode with current shield, but not efficient in using one of both individually.

  • PDF

The Characteristics on Arc Pressure Distribution of TIG Welding with Shield Gas Mixing Ratio (TIG 용접에서의 실드 가스 혼합비에 따른 아크 압력분포 특성)

  • Oh Dong-Soo;Kim Yeong-Sik;Cho Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • Arc pressure is one of important factors in understanding physical arc phenomena. Especially it affects on the penetration, size and shape of TIG welding. Some researches were reported on the effect of arc pressure in low and middle current region. But there are not any research in high current region. The purpose of this study is to investigate the arc pressure distribution with mixing ratio of shield gas such as Ar and He gases. A Cu block with water cooling was specifically designed and used as an anode electrode in order to measure the arc pressure in high current region. Then, the arc pressure distribution was measured with change in welding current and mixing ratio of shield gases. The arc force was obtained by numerically integrating the measured results. As the results, it was shown that the arc pressure was concentrated at the central part of the arc in middle and high current regions when a pure Ar gas was used. In case of Ar + He mixing gas, the arc pressure was much lower than that of pure Ar gas. In addition, it was widely distributed to radial direction.

Effect of Target Angle and Thickness on the Heel Effect and X-ray Intensity Characteristics for 70 kV X-ray Tube Target

  • Kim, Gyehong;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.272-276
    • /
    • 2016
  • To investigate the optimum x-ray tube design for the dental radiology, factors affecting x-ray beam characteristics such as tungsten target thickness and anode angle were evaluated. Another goal of the study was to addresses the anode heel effect and off-axis spectra for different target angles. MCNPX has been utilized to simulate the diagnostic x-ray tube with the aim of predicting optimum target angle and angular distribution of x-ray intensity around the x-ray target. For simulation of x-ray spectra, MCNPX was run in photon and electron using default values for PHYS:P and PHYS:E cards to enable full electron and photon transport. The x-ray tube consists of an evacuated 1 mm alumina envelope containing a tungsten anode embedded in a copper part. The envelope is encased in lead shield with an opening window. MCNPX simulations were run for x-ray tube potentials of 70 kV. A monoenergetic electron source at the distance of 2 cm from the anode surface was considered. The electron beam diameter was 0.3 mm striking on the focal spot. In this work, the optimum thickness of tungsten target was $3{\mu}m$ for the 70 kV electron potential. To determine the angle with the highest photon intensity per initial electron striking on the target, the x-ray intensity per initial electron was calculated for different tungsten target angles. The optimum anode angle based only on x-ray beam flatness was 35 degree. It should be mentioned that there is a considerable trade-off between anode angle which determines the focal spot size and geometric penumbra. The optimized thickness of a target material was calculated to maximize the x-ray intensity produced from a tungsten target materials for a 70 keV electron energy. Our results also showed that the anode angle has an influencing effect on heel effect and beam intensity across the beam.

Active-Matrix Field Emission Display with Amorphous Silicon Thin-Film Transistors and Mo-Tip Field Emitter Arrays

  • Song, Yoon-Ho;Hwang, Chi-Sun;Cho, Young-Rae;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.290-298
    • /
    • 2002
  • We present, for the first time, a prototype active-matrix field emission display (AMFED) in which an amorphous silicon thin-film transistor (a-Si TFT) and a molybdenum-tip field emitter array (Mo-tip FEA) were monolithically integrated on a glass substrate for a novel active-matrix cathode (AMC) plate. The fabricated AMFED showed good display images with a low-voltage scan and data signals irrespective of a high voltage for field emissions. We introduced a light shield layer of metal into our AMC to reduce the photo leakage and back channel currents of the a-Si TFT. We designed the light shield to act as a focusing grid to focus emitted electron beams from the AMC onto the corresponding anode pixel. The thin film depositions in the a-Si TFTs were performed at a high temperature of above 360°C to guarantee the vacuum packaging of the AMC and anode plates. We also developed a novel wet etching process for $n^+-doped$ a-Si etching with high etch selectivity to intrinsic a-Si and used it in the fabrication of an inverted stagger TFT with a very thin active layer. The developed a-Si TFTs performed well enough to be used as control devices for AMCs. The gate bias of the a-Si TFTs well controlled the field emission currents of the AMC plates. The AMFED with these AMC plates showed low-voltage matrix addressing, good stability and reliability of field emission, and good light emissions from the anode plate with phosphors.

  • PDF

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF