• Title/Summary/Keyword: annual average precipitation

Search Result 179, Processing Time 0.026 seconds

Spatial Distribution of Precipitation Trends According to Geographical and Topographical Conditions (지리지형적 조건에 따른 강수량 추세 분포)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.385-396
    • /
    • 2009
  • The spatial distribution of precipitation trends according to urbanization, geographical and topographical conditions have been studied. In this study, precipitation data from 1973 to 2006 were analyzed for 56 climatological stations including the Seoul metropolis in South Korea. In addition to annual average daily precipitation, monthly average daily precipitation in April, July, October and January were analyzed, considering seasonal effect. The geographical and topographical characteristics of these sites were examined using GIS analysis. Land use status of the study area was also examined to estimate the extent of urbanization. The study results indicate that annual average precipitation increased, and monthly average precipitation in April and October decreased, while those in January and July increased. Considering urbanization effect, annual average precipitation and monthly average precipitation in July increased; however, monthly average precipitation in January, April and October decreased. Furthermore, compared with urbanization rate and proximity to coast, average elevation of study area appeared to be the most close correlation with annual and monthly averages of precipitation trends.

An Analysis of Temporal Characteristic Change for Various Hydrologic Weather Parameters (I) - On the Basic Statistic, Trend - (각종 수문기상인자의 경년별 특성변화 분석(I) - 기본통계량, 경향성을 중심으로 -)

  • Lee, Jae-Joon;Jang, Joo-Young;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.409-419
    • /
    • 2010
  • In this study, for the purpose of analyzing the characteristics of Korean hydrologic weather parameters, 9 hydrologic weather parameters data such as annual precipitation, annual rainy days, annual average relative humidity, annual average temperature, annual duration of sunshine, annual evaporation, annual duration of precipitation, annual snowy days and annual new snowy days are collected from 63 domestic meteorological stations that has the hydrologic weather parameters records more than 30 years. And the basic characteristics of hydrologic weather parameters through basic statistics, moving average and linear regression analysis are perceived. Also trend using the statistical methods like Hotelling-Pabst test and Mann-Kendall test about hydrologic weather parameters is analyzed. Through results of basic analysis, moving average and linear regression analysis it is shown that precipitation is concentrated in summer and deviation of precipitation for each season showed significant difference in accordance with Korean climate characteristics, besides the increase in annual precipitation and annual average temperature, annual average relative humidity and annual duration of sunshine reduction and annual rainy days is said to increase or decrease. The results of statistical analysis of trend are summarized as trend commonly appeared in annual average relative humidity and annual average temperature. and annual precipitation, annual rainy days and annual duration of sunshine showed different results according to area.

The Statistical Approaches on the Change Point Problem Precipitation in the Pusan Area (부산지방 강수량의 변화시점에 관한 통계적 접근)

  • 박종길;석경하
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • This paper alms to estimate the change point of the precipitation in Pusan area using the several statistical approaches. The data concerning rainfall are extracted from the annual climatological report and monthly weather report issued by the Korean Meteorological Administration. The average annual precipitation at Pusan is 1471.6 mm, with a standard deviation of 406.0 mm, less than the normal(1486.0 mm). The trend of the annual precipitation is continuously decreasing after 1991 as a change point. And the statistical tests such as t-test and Wilcoxon rank sum test reveals that the average annual precipitation of after 1991 is less than that of before 1991 at 10% significance level. And the mean gnu성 precipitation In Kyongnam districts is also continuously decreasing after 1991 same as Pusan.

  • PDF

Assessment of GCM and Scenario Uncertainties under Future Climate Change Conditions

  • Jang, S.;Hwang, M.;Park, J.;Lim, K.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.658-659
    • /
    • 2015
  • GCM and scenario uncertainties are first investigated for 5 major watersheds (Han River, Paldang dam, Namhan River, Bukhan River and Imjin River watersheds). As a result of this study, it is found that CCSM3-based annual precipitation increases linearly with respect to the 10-year moving average values while CSIRO-based precipitation does not show much of trend. The results from annual DJF mean precipitation show a similar trend with respect to their 10-year moving average values. Both CCSM3- and CSIRO-based annual JJA mean precipitation do not show much of trend toward 21st century. In general, CCSM3-based precipitation values are slightly higher than CSIRO-based values with respect to their annual and annual JJA mean precipitation values, but CSIRO-based annual DJF mean precipitation values are slightly higher than CCSM3-based values. In case of mean air temperature between CCSM3 and CSIRO during 21st century, all of results show a clear trend in warming with the passage of time for 5 watersheds. However the upward trends from CCSM3-based values slow down toward end of 21stcentury while CSRIO-based values increases almost linearly.

  • PDF

An Analysis of Temporal Characteristic Change for Various Hydrologic Weather Parameters (II ) - On the Variability, Periodicity - (각종 수문기상인자의 경년별 특성변화 분석 (II) - 변동성, 주기성을 중심으로 -)

  • Lee, Jae-Joon;Jang, Joo-Young;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.483-493
    • /
    • 2010
  • In this study, for the purpose of analyzing variability and periodicity of Korean hydrologic weather parameters, 5 hydrologic weather parameters data such as annual precipitation, annual rainy days, annual average temperature, annual average relative humidity, annual duration of sunshine are collected from 63 domestic meteorological stations that has the hydrologic weather parameters records more than 30 years. And in this study the variability and periodicity using the statistical methods like Wald-Wolfowitz test, Mann-Whitney test, and Wavelet Transform about hydrologic weather parameters is analyzed. The results of statistical analysis of variability and periodicity can be summarized as follows: 1) Variability commonly appeared in annual average temperature and annual average relative humidity. 2) Annual precipitation, annual rainy days and annual duration of sunshine showed different results according to area. 3) Periodicity appeared in annual precipitation and annual rainy days but did not appeard in annual average temperature, annual average relative humidity and annual duration of sunshine.

A Studay on the Rainfall and Drought Days in Kyupgpook Area (경북지방(慶北地方)의 강수(降水) 및 무강수(無降水) 현상(現象) 조사(調査) 분석(分析))

  • Suh, Seung Duk;Jeon, Kuk Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.143-157
    • /
    • 1987
  • In order to determine the design precipitation, the most probable daily precipitation and annual precipitation at every spot are calculated and iso - precipitation line are drawn. Probability of precipitation and drought phenomena of each gage station are analyzied by the method of frequency analysis from the statistical conceptions. The results summarized in this study are as the follows. 1. Annual mean precipitation in kyungpook area are 1044 mm, about 115 mm less than annual mean precipitation of Korea amounts to l1S9mm, and found to regionally unequal. 2. Monthly mean rainfall of July is 242.2mm, 23.2%, August 174.2mm, 16.7%, June 115mm, 11% and September 114.2mm, 10.9% and Rainfall depth of July-August are more than 40% of annual precipition. This shows notable summer rainy weather by typoon and low pressure storm and seasonal unbalance of water supply. 3. The relation among the maximum precipi.tation per day, per two continuous days and per three contnous days are caculated and the latter is found 31.0% increased rate of the first and the last 48.2% increased rate of first. 4. Probability precipitation in Kyungpook area are shown as 9.0%(5 year), 13.3%(10 year), 17.7%(20 year), 23.1%(50 year), 27.0%(100 year) and 31.1%(200 year) increased rate of each recurrence year compared with observed average annual precipitation. 5. From annual precipitation and maximum daily rainfall data probability of precipitation and precipitation isohyetal line are derived which shown as Table 11 and Fig. 8. 6. Drought days are divided 6 class and analysed results are shown on table 12. Average occurrence time of 10-14 continuous drought days are 2.3 time per year, 15-19 days are 0.9 time per year, 20-24 days are one per six years, 30-34 days are once per nine years and over than 35days are once per 25 years.

  • PDF

Analysis of Precipitation Distribution in the region of Gangwon with Spatial Analysis (I): Classification of Precipitation Zones and Analysis for Seasonal and Annual Precipitation (공간분석을 이용한 강원도 지역의 강수분포 분석 (I): 강수지역 구분과 계절별 및 연평균 강수량 분석)

  • Um, Myoung-Jin;Jeong, Chang-Sam;Cho, Won-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.103-113
    • /
    • 2009
  • In this study, we separated the precipitation zones using the geographic location of stations and precipitation characteristics (monthly, seasonal, annual) in Gangwon province. Precipitation data of 66 weather stations (meterological office: 11 locations, auto weather system (AWS): 55 places) were used, and statistical method, K-means cluster method, was conducted for division of the precipitation regions. As the results of regional classification, the five zones of precipitation (Yongdong: 1 region, Youngseo: 4 regions) were separated. Seasonal average precipitation in spring is similar throughout Gangwon Province, seasonal average precipitation in summer has high values at Youngseo, and seasonal average precipitation in autumn and winter have high values at Youngdong. The some areas, the vicinity of Misiryeong and Daegwallyeong, happens the orographic precipitation in spatial analysis, but the orographic effects didn't occur for the whole Gangwon areas. However, to achieve more accurate results, the expansion of observatories per elevation and AWS data are demanded.

A Study on Meteorological Elements Effecting on Large-scale Forest Fire during Spring Time in Gangwon Young-dong Region (강원 영동지역 봄철 산불대형화 영향 기상요소 분석)

  • Lee, Si-Young;Kim, Ji-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • In this study, we analyzed the meteorological elements, when large forest fires were occurred, The rate of precipitation was 13% of annual average precipitation. Especially, the stronger wind speed, lower humidity and rainfall than average annual record were the distinct feathers on the year when large forest fire occurred in east coast area in Kangwon region. The average, maximum and maximum instantaneous wind speed was 5.9 m/s, 11.3 m/s and 20.9 m/s when large forest fires occurred. The average, maximum and maximum instantaneous wind speed on large fire occurred were 1.8 m/s, 3.0 m/s and 6.9 m/s faster than and average wind speed when whole forest fires occurred. The results indicated that the large forest fire occurrence had a close correlation with meteorological elements.

A Comparison of the Methods for Estimating the Missing Precipitation Values Ungauged (미계측 결측 강수자료 보완 방법의 비교)

  • Yoo, Ju-Hwan;Choi, Yong-Joon;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1427-1430
    • /
    • 2009
  • The amount and the continuity of the precipitation data used in a hydrological analysis may exert a big influence on the reliability of the analysis. It is a fundamental process to estimate the missing data caused by such as a breakdown of the rainfall recording machine or to expand a short period of rainfall data. In this study the eight methods widely used as methods for estimating are compared. The data used in this research is the annual precipitation amount during 17 years at the Cheolwon station including an ungauged period of 15 years and its five surrounding stations. By use of this certified method the ungauged precipitation values at the Cheolweon station is estimated and the areal average of annual precipitation for 32 years at the Han River basin is calculated.

  • PDF

Water Resources Utilization Pattern of JangSung Reservoir (장성호 수자원 이용 패턴)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Yoon, Suk-Gun;Jung, Jae-Woon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.291-294
    • /
    • 2003
  • The Water resources utilization pattern of Jangsung reservoir was studied. The observed precipitation and existing reservoir operation data such as irrigation amount, reservoir storage, river maintenance requirement, flood control discharge were collected for ten years period and analyzed. Major findings of this study are as follows: The observed average, minimum, maximum annual precipitation were 905.1mm, 1,977.3mm, 1,554.3mm during study period, respectively. The average annual irrigation amount was 554.5mm, irrigation amount of drought years of '92 and '94 was 604.6mm, 679.2mm, respectively. However, irrigation amount of extended drought year '95 was 384.9mm. It showed that supplying capacity of Jangsung reservoir was limited when consecutive 2 year drought occurred. The main water resources usage of Jangsung reservoir was irrigation, but flood control discharge exceed irrigation amount exceptionally when high precipitation occurred. The reservoir operation record revealed that discharge for river maintenance was delivered even drought years.

  • PDF