• Title/Summary/Keyword: annealing condition

Search Result 516, Processing Time 0.022 seconds

Simulation of optimal ion implantation for symmetric threshold voltage determination of 1 ${\mu}m$ CMOS device (1 ${\mu}m$ CMOS 소자의 대칭적인 문턱전압 결정을 위한 최적 이온주입 시뮬레이션)

  • Seo, Yong-Jin;Choi, Hyun-Sik;Lee, Cheol-In;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.286-289
    • /
    • 1991
  • We simulated ion implantation and annealing condition of 1 ${\mu}m$ CMOS device using process simulator, SUPREM-II. In this simulation, optimal condition of ion implantation for symmetric threshold voltage determination of PMOS and NMOS region, junction depth and sheet resistance of source/drain region, impurity profile of each region are investigated. Ion implantation dose for 3 ${\mu}m$ N-well junction depth and symmetric threshold voltage of $|0.6|{\pm}0.1$ V were $1.9E12Cm^{-2}$(for phosphorus), $1.7E122Cm^{-2}$(for boron) respectively. Also annealing condition for dopant activation are examined about $900^{\circ}C$, 30 minutes. After final process step, N-well junction, P+ S/D junction and N+ S/D junction depth are calculated 3.16 ${\mu}m$, 0.45 ${\mu}m$ and 0.25 ${\mu}m$ respectively.

  • PDF

LC Alignment Effects using a-C:H Thin Film as Working Gas at Bias Condition (바이어스 조건하에서 증착한 a-C:H 박막을 이용한 액정 배향 효과)

  • Jo, Yong-Min;Hwang, Jeoung-Yeon;Park, Chang-Joon;Seo, Dae-Shik;Rho, Soon-Jun;Ahn, Han-Jin;Baik, Hong-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.136-139
    • /
    • 2003
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a-C:H thin film as working gas at 30W rf bias condition. A high pretilt angle of about $5^{\circ}$ by ion beam(IB) exposure on the a-C:H thin film surface was measured. A good LC alignment by the IB alignment method on the a-C:H thin film surface was observed at annealing temperature of $250^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $300^{\circ}C$. Consequently, the high LC pretilt angle and the good thermal stability of LC alignment by the IB alignment method on the a-C:H thin film surface as working gas at 30W rf bias condition can be achieved.

  • PDF

Effects of Cold Rolling Parameters on Sagging Behavior for Three Layer Al-Si/Al-Mn(Zn)/Al-Si Brazing Sheets

  • S.H. Lee;J.S. Yoon;M.S. Kim;D. Jung
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.227-227
    • /
    • 1999
  • The effects of intermediate annealing (IA) and the final cold rolling (CR) condition on the microstructure and sagging resistance during brazing were investigated using three layer clad sheets composed of the Al-7.5 wt.%Si alloy (filler, thickness: 10 ㎛)/Al-1.3 wt.%Mn based alloy (core, 80㎛)/Al-7.5 wt.%Si alloy (filler, 10㎛). Also, the effect of 1.2∼2 wt.% Zn addition into the core on the sagging resistance of the clad sheets was determined. It was revealed that all the clad sheets fabricated by the optimum condition (IA at 690 K and CR to 20∼45%) show excellent sagging resistance with a limited erosion due to the formation of a coarsely recrystallized grain structure in the core during brazing. It was also revealed that the recrystallization behavior of the Al-1.3 wt.%Mn based alloy is hardly affected by the addition of 1.2-2 wt.%Zn during the brazing cycle. Therefore, the sagging resistance of the clad sheets is found to be governed not by the Zn content added in the A1-1.3wt.%Mn based core, but by the intermediate annealing and final cold rolling condition.

Effect of Preparation Condition of Precursor Thin Films on the Properties of CZTS Solar Cells

  • Seong, Si-Jun;Park, Si-Nae;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.318.1-318.1
    • /
    • 2013
  • Nowadays Cu2ZnSnS4 (CZTS) solar cell is attracting a lot of attention as a strong alternative to CIGS solar cell due to nontoxic and inexpensive constituent elements of CZTS. From various processes for the fabrication of CZTS solar cell, solution-based deposition of CZTS thin films is well-known non-vacuum process and many researchers are focusing on this method because of large-area deposition, high-throughput, and efficient material usage. Typically the solution-based process consists of two steps, coating of precursor solution and annealing of the precursor thin films. Unlike vacuum-based deposition, precursor solution contains unnecessary elements except Cu, Zn, Sn, and S in order to form high quality precursor thin films, and thus the precise control of precursor thin film preparation is essential for achieving high efficient CZTS solar cells. In this work, we have investigated the effect of preparation condition of CZTS precursor thin films on the performance of CZTS solar cells. The composition of CZTS precursor solution was controlled for obtaining optimized chemical composition of CZTS absorber layers for high-efficiency solar cells. Pre-annealing process of the CZTS precursor thin films was also investigated to confirm the effect of thermal treatment on chemical composition and carbon residues of CZTS absorber layers. The change of the morphology of CZTS precursor thin film by the preparation condition was also observed.

  • PDF

The Effects of Drawing Strain and Annealing Condition on Mechanical Properties of High Strength Steel Wires (고강도강선의 신선 가공할 및 열처리 조건이 기계적 성질에 미치는 영향)

  • Lee, J.W.;Lee, Y.S.;Park, K.T.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.138-141
    • /
    • 2008
  • The effects of annealing temperature and time on mechanical properties and microstructures were investigated in cold drawn pearlitic steel wires. During annealing, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. Since tensile strength and the occurrence of the delamination would be closely related to the dissolution of cementite, the lower annealing temperature and the increase of drawing strain caused the higher tensile strength and the easier occurrence of the delamination in cold drawn pearlitic steel wires.

  • PDF

Characterization of Sol-Gel Derived Antimony-doped Tin Oxide Thin Films for Transparent Conductive Oxide Application

  • Woo, Dong-Chan;Koo, Chang-Young;Ma, Hong-Chan;Lee, Hee-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.241-244
    • /
    • 2012
  • Antimony doped tin oxide (ATO) thin films on glass substrate were prepared by the chemical solution deposition (CSD) method, using sol-gel solution synthesized by non-alkoxide precursors and the sol-gel route. The crystallinity and electrical properties of ATO thin films were investigated as a function of the annealing condition (both annealing environments and temperatures), and antimony (Sb) doping concentration. Electrical resistivity, carrier concentration, Hall mobility and optical transmittance of ATO thin films were improved by Sb doping up to 5~8 mol% and annealing in a low vacuum atmosphere, compared to the undoped tin oxide counterpart. 5 mol% Sb doped ATO film annealed at $550^{\circ}C$ in a low vacuum atmosphere showed the highest electrical properties, with electrical resistivity of about $8{\sim}10{\times}10^{-3}{\Omega}{\cdot}cm$, and optical transmittance of ~85% in the visible range. Our research demonstrates the feasibility of low-cost solution-processed transparent conductive oxide thin films, by controlling the appropriate doping concentration and annealing conditions.

The variation of C-V characteristics of thermal oxide grown on SiC wafer with the electrode formation condition (SiC 열산화막의 Electrode형성조건에 따른 C-V특성 변화)

  • Kang, M.J.;Bahng, W.;Song, G.H.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.354-357
    • /
    • 2002
  • Thermally grown gate oxide on 4H-SiC wafer was investigated. The oxide layers were grown at l150$^{\circ}C$ varying the carrier gas and post activation annealing conditions. Capacitance-Voltage(C-V) characteristic curves were obtained and compared using various gate electrode such as Al, Ni and poly-Si. The interface trap density can be reduced by using post oxidation annealing process in Ar atmosphere. All of the samples which were not performed a post oxidation annealing process show negative oxide effective charge. The negative oxide effective charges may come from oxygen radical. After the post oxidation annealing, the oxygen radicals fixed and the effective oxide charge become positive. The effective oxide charge is negative even in the annealed sample when we use poly silicon gate. Poly silicon layer was dope by POCl$_3$ process. The oxide layer may be affected by P ions in poly silicon layer due to the high temperature of the POCl$_3$ doping process.

  • PDF

Effects of Heat-treatment Parameters on Mechanical Properties of A3003 Al Alloy Tubes for Heat-exchangers by High Frequency Induction Welding (고주파유도 용접된 A3003 알루미늄합금 튜브의 기계적 특성에 미치는 열처리조건의 영향)

  • Gook, Jin-Seon;Yoon, Dong-Ju;Kim, Byung-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2006
  • The aim of this study is to investigate the full annealing parameter for A3003 Al alloy welded tubes. The A3003 Al alloy tubes with 34 mm in external diameter and 1.3 mm in thickness for OPC drum were manufactured by high frequency induction welding with the V shaped convergence angle $6.7^{\circ}$ and power input 50 kW. The tensile and yield strength decreased with increasing the annealing temperature and time remarkably, but elongation increased remarkably. Vickers hardness in welds and base metal decreased with increasing the annealing temperature and time remarkably. In a certain experimental condition, the welds line in A3003 alloys disappeared at $520^{\circ}C$ for 4hr because of the same mechanical properties and structures between welds and base metal.

Electrical Characteristic Analysis of IGZO TFT with Poly (4-vinylphenol) Gate Insulator according to Annealing Temperature (Poly (4-vinylphenol) 게이트 절연체를 적용한 IGZO TFT의 열처리 온도에 따른 전기적 특성 분석)

  • Park, Jung Hyun;Jeong, Jun Kyo;Kim, Yu Jeong;Jun, Jung Byung;Lee, Ga Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.97-101
    • /
    • 2017
  • In this paper, IGZO thin film transistor (TFT) was fabricated with cross-linked Poly (4-vinylphenol) (PVP) gate dielectric for flexible, transparent display applications. The PVP is one of the candidates for low-temperature gate insulators. MIM structure was fabricated to measure the leakage current and evaluate the insulator properties according to the annealing temperature. Low leakage current ( <0.1nA/cm2 @ 1MV/cm ) was observed at $200^{\circ}C$ annealing condition and decreases much more as the annealing temperature increases. The electrical characteristics of IGZO TFT such as subthreshold swing, mobility and ON/OFF current ratio were also improved, which shows that the performance of IGZO TFTs with PVP can be enhanced by reducing the amount of incomplete crosslinking in PVP.

  • PDF

Microstructrue and Mechanical Properties of A3003 Aluminium Alloy Welds by Heat-treatment (열처리된 A3003 알루미늄합금 용접부의 미세조직 및 기계적 특성)

  • Lee, Il-Cheon;Song, Yeong-Jong;Gook, Jin-Seon;Yoon, Dong-Joo;Kim, Byung-Il
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.51-57
    • /
    • 2007
  • The present work was aimed to examine the variation of microstructure and mechanical properties by annealing($100{\sim}620^{\circ}C$, $2{\sim}8hr$) in A3003 Al alloy welded pipes. The A3003 Al alloy pipes with 34 mm in external diameter and 1.3 mm in thickness were manufactured by high frequency induction welding with the V shaped convergence angle $6.7^{\circ}$ and power input 50 kW. The tensile and yield strength decreased with increasing the annealing temperature remarkably, but elongation increased remarkably. Vickers hardness in welds decreased with increasing the annealing temperature remarkably. The primary intermetallic compound of $Al_{12}(Fe,\;Mn)_2Si$ was precipitated in welds as the same base metal. In a certain experimental condition, the welds line in A3003 alloys disappeared at $450^{\circ}C$ for 2 hr because of the same mechanical property and structure between welds and base metal.