• Title/Summary/Keyword: annealing ambient pressure

Search Result 41, Processing Time 0.026 seconds

P-type Electrical Characteristics of the Amorphous La2NiO4+δ Thin Films

  • Hop, Dang-Hoang;Lee, Jung-A;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.4
    • /
    • pp.231-236
    • /
    • 2018
  • We report p-type electrical characteristics of the amorphous $La_2NiO_{4+{\delta}}$ thin films which were sputtered on the glass substrates using an RF sputtering system. As-deposited thin films at room temperature and $300^{\circ}C$ were amorphous in nature. Post-annealing of the thin film samples over $400^{\circ}C$ resulted in the nano-crystallization of the $La_2NiO_{4+{\delta}}$. The electrical properties of the films were much dependent on the oxygen partial pressure, temperature of the post-annealing and sputtering ambient. The as-deposited samples at room temperature show a hole concentration of $7.82{\times}10^{13}cm^{-3}$, and it could be increased as high as $3.51{\times}10^{22}cm^{-3}$ when the films were post-annealed in an oxygen atmosphere at $500^{\circ}C$. Such p-type conductivity behavior of the $La_2NiO_{4+{\delta}}$ films suggests that the amorphous and nano-crystallized $La_2NiO_{4+{\delta}}$ films have potential for the application as p-type semiconductive or conductive materials at low temperatures where material diffusion is limited.

A Study on the Mask Fabrication Process for X-ray Lithography (X-선 노광용 마스크 제작공정에 관한 연구)

  • 박창모;우상균;이승윤;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2000
  • X-ray lithography mask with SiC membrane and Ta absorber patterns has been fabricated using ECR plasma CVD, d.c. magnetron sputtering, and ECR plasma etching. The stress of stoichiometric SiC film was adjusted by rapid thermal annealing under $N_2$, ambient. Adjusting the working pressure during sputtering process resulted in a near-zero residual stress, reasonable density, and smooth surface morphology of Ta film. Cl-based plasma showed a good etching characteristics of Ta, and two-step etching process was implemented to suppress microloading effect fur sub-quarter $\mu\textrm{m}$ patterning.

  • PDF

Effects of Substrate Temperature and the $O_2$/Ar Ratio on the Characteristics of RF Magnetron Sputtered $RuO_2$ Thin Films

  • Park, Jae-Yong;Shim, Kyu-Ha;Park, Duck-Kyun
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.43-47
    • /
    • 1996
  • $RuO_2$ thin films deposited directly on Si substrate by RF magnetron sputtering method using $RuO_2$ target have been investigated. Special interest was focused on the effect of process parameter on the surface roughness of $RuO_2$ films. Crystallization behavior and electrical properties of the films deposited at $300^{\circ}C$ were superior to those deposited at room temperature. Metallic Ru phase was formed in pure Ar and this phase had resulted poor adhesion after post annealing process in oxidizing ambient. Microstructural analysis reveals that the size of the $RuO_2$ crystallites gets smaller and the surface becomes smoother as the $O_2$ partial pressure or film thickness decreases. Irrespective of the $O_2/Ar$ ratio, resistivity of $RuO_2$ films ranged in $50~70 {\mu}{\Omega}-cm$. As the film thickness decreases, there is a thickness where the resistivity rises abruptly. Such an onset thickness turned out to be dependent n the $O_2$/Ar ratio.

  • PDF

Removal of Methylene Blue from Water Using Porous $TiO_2$/Silica Gel Prepared by Atomic Layer Deposition

  • Sim, Chae-Won;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.160-160
    • /
    • 2011
  • In the present work, $TiO_2$ fiilms supported by porous silica gel with high surface area synthesized by atomic layer deposition(ALD). Porous structure of silica substrate could be maintained even after deposit large amount of $TiO_2$ (500 cycles of ALD process), suggesting the differential growth mode of $TiO_2$ on top surface and inside the pore. All the $TiO_2$-covered silica samples showed improved MB adsorption abilities, comparing to bare one. In addition, when silica surface was covered with $TiO_2$ films, MB adsorption capacity was almost fully recovered by re-annealing process (500$^{\circ}C$, for 1 hr, in ambient pressure), whereas MB adsorption capacity of bare silica was decreased after re-heaing process. FT-IR study demonstrated that $TiO_2$ film could prevent deposition of surface-bound intermediate species during thermal decomposition of adsorbed MB molecules. Photocatalytic activity of $TiO_2$/silica sample was also investigated.

  • PDF

The Electrical and Microstructural Properties of ZnO:N Thin Films Grown in The Mixture of $N_2$ and $O_2$ by RF Magnetron Sputtering

  • Jin, Hu-Jie;Lee, Eun-Cheal;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.144-145
    • /
    • 2006
  • ZnO is a promising material to make high efficiency violet or blue light emitting diodes (LEDs) for its large binding energy (60meV) and big bandgap. But the high quality p-type conduction of ZnO is a dilemma to achieve LEDs with it. In present study, we presented a reliable method to prepare ZnO thin films on (100)silicon substrates by RF magnetron sputtering in the mixture ambient of $N_2$ and $O_2$, accompanying with low pressure annealing in the sputtering chamber in $O_2$ at $600^{\circ}C$ and $800^{\circ}C$ respectively. X-ray diffraction and Hail effect with Van der Paul method were performed to test ZnO films. Seeback effect was also carried out to identify carrier types in ZnO films and showed the N-doped ZnO film annealed at $800^{\circ}C$ had achieved p-type conduction.

  • PDF

Scanning Photoelectron Microscopy Study on the Chemical State of Locally Oxidized and Hydrogenized Graphene Layer

  • Km, Wondong;Byun, Iksu;Hwang, Inrok;Park, Bae Ho;Baek, Jaeyun;Shin, Hyun-Joon;Shiu, Hung Wei;Chen, Chia-Hao
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.144.1-144.1
    • /
    • 2013
  • Recently, we have developed the local oxidization and hydrogenization method for graphene layer using atomic force microscope(AFM) tip at room temperature and ambient pressure. With this method we could create locally oxidized or hydrogenized area on the graphene layer with various size from nanometer to micrometer scale, by controlling the amplitude and polarity of the voltage supplied between conducting AFM tip and the graphene layer. We investigated the chemical states of functionalized C atoms in the graphene layer using scanning photoelectron microscopy. By measuring C 1s core level X-ray Photoemission Spectra of the C atoms and suitable fitting process carried on the measured spectra, we could obtain the fraction of oxidization and hydrogenization under various condition, and the evolution of each chemical state during thermal annealing process.

  • PDF

Characteristics of ferroelectric $YMnO_3$ thin film with low dielectric constant for NDRO FRAM (비파괴 판독형 메모리 소자를 위한 저유전율 강유전체 $YMnO_3$박막의 특성 연구)

  • 김익수;최훈상;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.258-262
    • /
    • 2000
  • $YMnO_3$thin films are deposited on Si(100) and $Y_2O_3/Si(100)$ substrate by radio frequency sputtering. The deposition condition of oxygen partial pressure and annealing temperature have significant influences on the preferred orientation of $YMnO_3$film and the size of memory window. The results of x-ray diffraction show that the film deposited in the oxygen partial pressure of 0% is highly oriented along c-axis after annealing at $870^{\circ}C$ for 1 hr in oxygen ambient. However, the films deposited on Si and $Y_2O_3/Si$ in the oxygen partial pressures of 20% show $Y_2O_3$ peak, the excess $Y_2O_3$ in the $YMnO_3$film suppresses the c-axis oriented crystallization. Especially memory windows of the $Pt/YMnO_3/Y_2O_3/Si$ capacitor are 0.67~3.65 V at applied voltage of 2~12 V, which is 3 times higher than that of the film deposited on $Y_2O_3/Si$ in 20% oxygen (0.19~1.21 V) at the same gate voltage because the film deposited in 0% oxygen is well crystallized along c-axis.

  • PDF

Fabrication of Artificial Sea Urchin Structure for Light Harvesting Device Applications

  • Yeo, Chan-Il;Kwon, Ji-Hye;Kim, Joon-Beom;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.380-381
    • /
    • 2012
  • Bioinspired sea urchin-like structures were fabricated on silicon by inductively coupled plasma (ICP) etching using lens-like shape hexagonally patterned photoresist (PR) patterns and subsequent metal-assisted chemical etching (MaCE) [1]. The lens-like shape PR patterns with a diameter of 2 ${\mu}m$ were formed by conventional lithography method followed by thermal reflow process of PR patterns on a hotplate at $170^{\circ}C$ for 40 s. ICP etching process was carried out in an SF6 plasma ambient using an optimum etching conditions such as radio-frequency power of 50 W, ICP power of 25 W, SF6 flow rate of 30 sccm, process pressure of 10 mTorr, and etching time of 150 s in order to produce micron structure with tapered etch profile. 15 nm thick Ag film was evaporated on the samples using e-beam evaporator with a deposition rate of 0.05 nm/s. To form Ag nanoparticles (NPs), the samples were thermally treated (thermally dewetted) in a rapid thermal annealing system at $500^{\circ}C$ for 1 min in a nitrogen environment. The Ag thickness and thermal dewetting conditions were carefully chosen to obtain isolated Ag NPs. To fabricate needle-like nanostructures on both the micron structure (i.e., sea urchin-like structures) and flat surface of silicon, MaCE process, which is based on the strong catalytic activity of metal, was performed in a chemical etchant (HNO3: HF: H2O = 4: 1: 20) using Ag NPs at room temperature for 1 min. Finally, the residual Ag NPs were removed by immersion in a HNO3 solution. The fabricated structures after each process steps are shown in figure 1. It is well-known that the hierarchical micro- and nanostructures have efficient light harvesting properties [2-3]. Therefore, this fabrication technique for production of sea urchin-like structures is applicable to improve the performance of light harvesting devices.

  • PDF

Growth of AlN Thin Film on Sapphire Substrates and ZnO Templates by RF-magnetron Sputtering (RF 마그네트론 스퍼터링법을 이용하여 사파이어 기판과 ZnO 박막 위에 증착한 AlN 박막의 특성분석)

  • Na, Hyun-Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • AlN thin films were deposited on sapphire substrates and ZnO templates by rf-magnetron sputtering. Powder-sintered AlN target was adopted for source material. Thickness of AlN layer was linearly dependent on plasma power from 50 to 110 W, and it decreased slightly when working pressure increased from 3 to 10 mTorr due to short mean free path of source material sputtered from AlN target by Ar working gas. When $N_2$ gas was mixed with Ar, the thickness of AlN layer decreased significantly because of low sputter yield of nitrogen. AlN layer was also deposited on ZnO template. However, it showed weak thermal stability that the interface between AlN and ZnO was deteriorated by rapid thermal annealing treatment above $700^{\circ}C$. In addition, ZnO layer was largely attacked by MOCVD ambient gas of hydrogen and ammonia around $700^{\circ}C$ through inferior AlN layer deposited by sputtering. And AlN layers were fully peeled off above $900^{\circ}C$.

Electronic Structure of Ce-doped ZrO2 Film: Study of DFT Calculation and Photoelectron Spectroscopy

  • Jeong, Kwang Sik;Song, Jinho;Lim, Donghyuck;Kim, Hyungsub;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • In this study, we evaluated the change of electronic structure during redox process in cerium-doped $ZrO_2$ grown by sol gel method. By sol-gel method, we could obtain cerium-doped $ZrO_2$ in high oxygen partial pressure and low temperature. After post annealing process in nitrogen ambient, the film is deoxidized. We used spectroscopic and theoretical methods to analysis change of electronic structure. X-ray absorption spectroscopy (XAS) for O K1-edge and Density Functional Theory (DFT) calculation using VASP code were performed to verify the electronic structure of the film. Also, high resolution x-ray photoelectron spectroscopy (HRXPS) for Ce 3d was carried out to confirm chemical bond of cerium doped $ZrO_2$. Through the investigation of the electronic structure, we verified as followings. (1) During reduction process, binding energy of oxygen is increase. Simultaneously, oxidation state of cerium was change to 4+ to 3+. (2) Cerium 4+ and cerium 3+ states were generated at different energy level. (3) Absorption states in O K edge were mainly originated by Ce 4+ $f_0$ and Ce 3+, while occupied states in valance band were mainly originated from Ce 4+ $f_2$.